1. Since o = 0 and the two samples are independent, we apply the pooled 7 test.
The test statistic is

o 5.5 — 4.3|
(20— D(1.5) +(G0- (L6 (1 1
20 +30-2 20 30

2.66267473.

10.05/2.20430-2 = to.02548 = 2.011 < 2.66267473, so we can conclude that the mean
driving times via Route 1 and Route 2 are different (1, # w») at level 0.05.

2. The p-value is 2(P(t(48) > 2.66267473). From the table “Quantiles for ¢ distri-
butions”, we have
10.01,48 < 2.66267473 < 10,005 43,

SO
0.005 < P(1(48) > 2.66267473) < 0.01

and
2 x 0.005 < 2P(1(48) > 2.66267473) < 2 x 0.01 .
— e —————

=0.01

p-value =0.02

Since the p-value is less than 0.02 and greater than 0.01, we can conclude that
the mean driving times via Route 1 and Route 2 are different (u; # u) at level a
when a > 0.02, but we cannot conclude u; # py at level @ when a < 0.01. The
answers: (a) Yes; (b) Yes; (c) Yes; (d) No; (e) No.

3. Let o
. X-7-1
NGy + 1ny)
where

. \/(m - DS} +(m - 1S}

n+ny,—2
The proposed test rejects Hy : u1 < pp + 1 atlevel aif Ty > 14, 4n,-2-

Below we will verify that the proposed test is of size a. Since the size of a test is
the largest Type I error probability under Hy, to find the size of the test, we need
to find the Type I error probability of the proposed test, which is

P(Tl > ta,n]+n2—2)
when p; < up + 1. Note that when y; < i + 1,

P(Tl > ta,n1+n2—2)
X-7-1
=P > Lan +ny—2
V&2 (1/ny + 1/ny)
X-V-u-p) pu-p-1
VE2(1ny + 1/ny) 621 /ny + 1/ny)
XY —(u — ) )
an+ny—2

VO2(1/ny + 1/no) g

i~ — 1 <0

V&2 n + 1/ny)

=P

ta,nl +np—2

<P (1)

since




when p; < up + 1. Since
X-Y—(u — )

V&A1 /m + 1/no)

~ () +ny —2),

(1) implies that
P(Tl > ta,n1+n2—2) < P(t(nl +ny — 2) > ta,n1+n2—2) =a (2)
when u; < up + 1. Moreover, when py = pp + 1,

P(Tl > ta,n1+n2—2)
X—Y—(u — )

> ta,n1+112—2
V&2 (1/ny + 1/n2)

= P(t(nl +ny — 2) > tu,n1+n2—2) =da. (3)

From (2) and (3), the largest Type I error probability of the proposed test under
Hy : pu; < up + 11is a, so the proposed test is of size a.

. The test rejects Hy at level « if and only if
observed T < =ty 4n,-2

& —observed T > 44, 4n,-2
© P(t(n) + ny —2) > —observed T) < P(t(ny + ny —2) > top,+n,-2)

=

o P(t(ny +ny —2) > —observed T) < a,
so the p-value of the test is
P(t(ny + no —2) > — observed T),
which is the same as

P(t(ny + np —2) < observed T).

. By Fact 2 given in Problem 5, we have
(m - 1)S2 Z_:] 5
_ = W:

and
(- DSE "
- 3 = i
i=1
where Wy, ..., W, _; are IID N(0, 1) random variables, and Vi, ..., V,,_; are IID
N(0, 1) random variables. Thus by Fact 1 given in Problem 5, we have

(o

(n; — 1S3

——— ~xXm -1
and 5

(n2 - I)S

——— ~xXm =D,



Since (n; — 1)S% /0% and (n, — 1)S% /0 are independent, the distribution of

(n; - l)Si + (ny — I)S%,
2

(o

is the same as the distribution of the sum of two independent y? random variables
of degrees of freedom (n; — 1) and (n, — 1) respectively. Let D denote this
distribution and we have

(n - 1)S2 +2(n2— 1)s2 > @

o

LetZ, ..., Zy-1, Uy, ..., Uy,—1 be IID N(O, 1) random variables, then Z:’z‘l_l Zl.2
and Y2, U? are independent, Y. ' Z? ~ x*(n; - 1), and Z;Z;l U ~ (- 1),

SO l
(Zl Z,?] + il U}} ~D. ©))

i=1 i=1

From (4) and (5), the distribution of
(ny — l)Si + (np — 1)S§,

and the distribution of

are both D. By Fact 1,

)

i=1

n2—1
Ut

i=1

~x (ny +my = 2),

so the distribution D is y*(n; + ny — 2), and (4) gives

(m = 1S + (m, — 1)S2
2

~)(2(n1 +np —2).
o

. Since the two samples of weights can be dependent, we apply the paired ¢ test.
The sample of weight increment amounts is

(77 — 80,54 — 55,53 — 63,48 — 48,51 — 50) = (-3,-1,-10,0, 1).
The sample mean and sample standard deviation are

-3-1-10+0+1 _

-2.6
5

and
2 —1)2 + (=10 2 +(0 2 2 ’ = V193 =

4.393177
5-1
respectively. The test statistic is
S5x|-2.6
7= X120 5365,
V19.3
Since fy0s5/2,5-1 = too2s4 = 2.776 > 1.323365, we cannot conclude that par-

ticipating in the program has a significant effect on weight change at the 0.05
level.



7. The testing problem is
Hy:01=0,vVvs. Hy :0 # 0.

Let §; be the sample standard deviation of the driving times for Rout i for i = 1,
2 and let F = §3/S7. We will use the test that rejects Hy at level 0.1 if F >

Joa231-121-1 = foos30020 or 1/F > fo1221-131-1 = fo.052030. From the table
“0.95 quantiles for F distributions”, f 052030 = 1.93 and fo 053020 = 2.04, so

1.6
observed F = ﬁ =1.137778 < 2.04 = f0'05,30,2()
and
2
observed T m <1< 1.93 = f5052030-

Therefore, we cannot conclude o # o, at level 0.1 based on the test.

8. The F test rejects Hy at level a when

2

X
> faj2m-1,m-1 0OF 527 Jap2m-1m-1- (6)
Y

2
4
S%
For a constant C, and positive integers m and n, note that
C> fa/Z,m,n =4 P(F(m, I’l) > C) < P(F(m’ I’l) > fa/Z.m,n) = a/2
S a>2P(F(m,n) > C),

so (6) holds if and only if

S2 S2
a> ZP(F(nz —1,ny — 1) > observed S—g) ora> 2P(F(n1 —1,ny, — 1) > observed S—};J
X Y

which is equivalent to

Sz S2
a > min [ZP[F(”Z —1,n; — 1) > observed S—g),ZP(F(m —1,n, — 1) > observed S—);D
X Y

Therefore, the p-value for the F test is

52 S2
min(ZP(F(nz - 1,n = 1) > observed S—;],ZP(F(m —1,n, — 1) > observed S—;()],
X Y

9. (a) Consider two random variables X and Y that are independent, where X ~
x*(m)and Y ~ y*(n). Let F = (X/m)/(Y/n), then F ~ F(m,n) and 1/F ~
F(n,m). We will show that fi_s,n = 1/ famn by verifying

P(F(n,m) > 1/ famn) =1 - a. (7
Note that
P(F(n’ m) > 1/fa,m,n) = P(I/F > 1/ﬁl,m,n)
= PF < fa,m,n) = P(F(m,n) < fa,m,n)

= 1- P(F(m, I/l) > famn)
= 1- P(F(m9 }’l) > fa,m,n) =1- a,

so (7) holds and we have shown that fi_,,m = 1/fsmns. Which implies
fa,m,n = ]/fl—a,n,m~



(b) Since W is a positive random variable,
LW > foppam © W <1/ far2nms
where 1/ fo/2.0m = fi-a/2.mn by the result in Part (a). Thus
L/W > forpam © W < ficaj2mn- (8)
Since for a € (0, 1), @/2 € (0,0.5) and @/2 < 1 — a/2, which implies that
Jas2mn > fimer2mn-
Therefore, if W > f,/2,m.n, then we cannot have W < fi_4/2.mn, SO
W > forpmnt VAW < fi_a/2mn} = 0,
which implies that
W > fopmat OVOUW > fopnmt =0

by (8).
Remark. If the condition W > 0 is replaced by the condition P(W > 0) = 1,
we can say that

{(W>0bNW> foppmnt VW > forpnmb =0,
which implies that
PAW > fappmn} 0V/W > foppnm}) =0
since P(W > 0) = 1.

10. Let C = —t,,—1. Under Hy, we have u > po, so the Type I error probability
X —
P( V(X — o) - C)

S
_p| VX -m) < ¢ - Y~ po)
S S
>0
=P({tin-1)<C). ©))

In addition, when p = p, the Type I error probability

P( V(X — p1o) <C

< ):Pam—1)<cy (10)

From (9) and (10), the largest Type I error probability under Hy : u > yg is

V(X — uo) <C

P
max ( S

HZpo

):P(t(n—1)<C),

so the size of the test is

Ptn—1) < C) = P(t(n = 1) < —tgp1) = P(t(n = 1) > topy) = a.



11.

12.

13.

(a) The p-value for the F test for testing
Hy:o01=02vs. H 01 #0

is
min(1.655241,0.3447595) = 0.3447595.

(b) The p-value from Part (a) is greater than 0.05, so we do not have strong
evidence for oy # 0. We will assume o) = 07, as required in the problem.
When o1 = 07, the pooled ¢ test can be applied for finding evidence for
M1 # pp. From the R output given in the problem, the p-value for the
pooled ¢ test is

0.001820591 < 0.002,

so we can conclude y; # u, at level 0.002.
(a) The observed test statistic for the apporximate z test is

observed Z = 10/100 — 20/1000 = 4.683104,

V(17100 + 1/1000)(30/1100)(1 — 30/1100)

so the p-value is P(N(0, 1) > 4.683104). Note that
P(N(0,1) > 4.683104) < P(N(0, 1) > 3.09)

and

P(N(O,1)>3.09) = 0.5-0.4990
= 0.001, (11)

so the p-value is less than 0.001 < 0.05 and there is strong evidence for
pa > PB.
(b) The p-value is

2P(N(0, 1) > |4.683104]) < 2P(N(0, 1) > 3.09) ‘2’ 2. 0.001 < 0.05,
so there is strong evidence for p4 # Pj.

Let Ppooled and Ppaired be the probabilites of rejecting u; = wo at level 0.05
when (uy, 1z, 01,02) = (1,1.2,1, 1) based on the pooled ¢ test and the paired ¢
test, respectively. We are given data for the testing problem

Ho : Ppooled < Ppaired V-S- H1 * Ppooled > Ppaired-

The observed Z statistic for the testing the difference of population proportions

is
16942/10° — 16684 /10°

V(2/10°) - p(1 = p)

. 16942 + 16684
24108
The observed Z statistics is 1.542604. From the table “Quantiles for t distribu-
tions”, zg.; = 1.282 < 1.542604, so we can conclude Ppooled > Ppaired at level
0.1. That is, at level 0.1, we can conclude that the two-sample pooled ¢ test has
larger power than the paired 7 test when (uy, (o, 01, 02) = (1, 1.2, 1, 1).

where



14. Let Ppooled and Ppaired be the probabilites of rejecting u; = u, at level 0.05

15.

when (uy, 4z, 01,02) = (0,0, 1, 1) based on the pooled 7 test and the paired ¢ test,
respectively. We are given data for the testing problem

Ho * Ppooled < Ppaired V-5- H1 * Ppooled > Ppaired-

The observed Z statistic for the testing the difference of population proportions

is
5078/10° — 5039/10°

Vs p(-p)

_ 5078 + 5039

24108

The observed Z statistics is 0.3979337 < zp; = 1.282, so we cannot conclude
Ppooled > Ppaired at level 0.1. That is, at level 0.1, we cannot conclude that the

two-sample pooled ¢ test has higher Type I error probability than the paired ¢ test
when (up, up,01,02) =(0,0,1,1).

where

A

(a) To prove the result in Part (a), we can apply the fact that for m values Wy,
.y Wﬂ’

Z W2 = m(W)* + Z(W, — W)y, (12)
=1 =1
where W = 27;1 W;/m. Forie{l,...,k}, apply (12) with m = n; and
Wi, s W) = Xig — X oo, X, — Xo)s
then we have
N _ _
W= " Z;(Xi,j - Xo) = Xi - Xg,
=
and for j e {1,...,n;},
Wi—W=X,;-X¢-Xi—Xo) = X; ;- Xi,
so (12) becomes
Z(Xi,j - X6)* = mi(X; — Xg)* + Z(Xi,j - X)%
j=1 j=1

The proof of (12) is given below and can be omitted.
Proof of (12). Note that

DW= WP = YW (W) - 2WW))
j=1

j=1
W}.] + (Z(v‘v)z] + (Z(—zv‘ij)]
j=1 j=1

m

Il
—_—

J=1

m
= W [+ m(W) +|-2W > W,

J=1 J=1
N———

=mW

= Zm:Wj. - m(W)?,

]



SO
m

Z Wi = m(W)y* + Z(Wj - Wy
J=1 J=1
The proof of (12) is complete.
(b) From Part (a), we have

DX - Kol = ni(Xi = Kot + ) (i — X (13)

j=1 =1
fori e {1,...,k}. Take the sum of each side of (13) overi € {1, ..., k}, then
we have

kK n

k ko n
2. 2 Xiy=XaY = 3 X = Xo)*+ 3 3 (X = Koy

i=1 j=1 i=1 i=1 j=1

SS SStreat SSE

total

16. Let X and S x be the sample mean and sample standard deviation of (X, . .. , Xn,)
respectively, and let ¥ and S y be the sample mean and sample standard deviation
of (Y1,...,Y,,) respectively. Then the two sample ¢ test (pooled ¢ test) is based
on the test statistic 7', where

T= X-r . ad)
Jm+ 1m)(n = DS+ (1 = 1S3/ 01 + 7z = 2)

as given in Problem 4.

For the ANOVA test, note that the grand mean is (n,X + n,¥)/(n; + ny), so

S o\ 2 o 5\ 2
_ X+nY _ X+nY
SStreat = nl(X__fL___ﬁz_) 4_n2(y__ﬁL___f3_)

ny +ny ny +np

(m@-nf (m&—mf
n|l——| +tm|———

ny +np n+np
X-7)y

mny(X = Y)*/(ny + my) = Tni+ 1/m;

with degree of freedom 2 — 1 = 1. Also,
SSE = (n; — 1)S% + (n, — 1)S?2
with degrees of freedom n; + ny — 2. Thus the F statistic is

SStreat/1
SSE/(n; + ny, —2)
X -Y)*/(1/ny + 1/ny)
((n1 = DS+ (np = DS3)/(n1 +ny = 2)
X-Y)2
: - . . as)
(I/ny +1/n2)(n1 = DS + (n2 = DSy)/(ny +nz = 2)

F =

From (14) and (15), we have T2 = F.



17. The grand mean is

5(350/5) + 10(695/10) + 4(288/4)
5+10+4

= 1333/19,
o)

SStreat = 5(350/5 — 1333/19)2 + 10(695/10 — 1333/19) + 4(288/4 — 1333/19)?
6507.5/361

with degrees of freedom 3 — 1 = 2.

SSE = (5 — (V/6/4)* + (10 — 1)(1/8.5/9)* + (4 — 1)(1/6/3)* = 20.5
with degrees of freedom 5 + 10 + 4 — 3 = 16. The observed F test statistic is

SStreat/2 _ (6507.5/361)/2 _ 104120

= = = 7.03466.
SSE/16 20.5/16 14801

observed

Since fy0s52.16 = 3.63 < 7.03466, we can conclude that the means of the score
distributions for the three classes are not all the same at the 0.05 significant level.

18. LetZ; = (X;—pw)/ofori=1,...,n,thenZ,...,Z,are lIDand fori =1, ..., n,
Zi~N@O,1)and X; = u + 0Z. Let Z = ¥, Z;/n, then

1 ¢ .
X=—Z(,Ll+O'Zi)=ﬂ+O'Z
n
i=1

and

X,‘—lell-f-O'Zi—(ﬂ-f—O'Z)ZU'(Zi—Z), (16)
SO

(n-1)$2 ~ ThXi-X)

2 B G

n
(16) >
= > (Zi-2)
i=1

n

12);W;=Z;;m= >

s 2 —n2y
i=1

Zzﬁ — (V2.
i=1

Note that VnZ = Y, Z;/ v/n is a linear combination of Zi, ..., Z,, where Z;,
..., Z, are IID N(0, 1) random variables, and

Var(NnZ) = (VyVarZ) = n - L) _

19

so by Fact 2 in the handout “Difference between special sums of squares of IID
N(0, 1) random variables”,

_ 2 n
O =Y 7 - (A~ - ),
i=1

19. (a) Yes. The p-value is 4.156 x 10~ < 0.001.



(b) The degrees of freedom for SS¢regt is 2, so the total number of classes is
2+1=3.

(c) The degrees of freedom for SSE is 96 and the degrees of freedom for
SStreat 1 2, so the total number of students is 96 + 2 + 1 = 99.

20. Let jz denote the average of all y; ;’s, then
S5+7+3+4+5+3

=q= 4.5.
= p G
The a;’s are computed using
Hin + Mip + 13
== i
3
* 5+7+3
+7+
ay = T_ﬂ:5_4'5 =0.5,
and 4+5+3
+5+
0=——— 4 =4-45=-05.

The g;’s are computed using

Mt
Bj= 3 M,
% 544
ﬁlz%—ﬂ=4.5—4.5:0,
745
ﬁgZ%—/d=6—4.5=1.5,
and 343
,B3=%—/1:3—4.5=—1.5.

The v; ;’s are computed using

Yij = Mij—H— i — B,

o)
Y.1=5-(45+05+0)=0,
Yia=7-(45+05+15)=0.5,
y13=3-(@45+05-15)=-05,
v21=4-(45-05+0)=0,
Y220=5-(45-05+15)=-0.5,
and

v23=3-(45-05-15)=0.5.

21. Leta = (a1 +ay)/2and b = ¥3_, b;/3. Then

PRV
Ho= 6
2 3 X b,
2z 2@+ b))
6
3% ai+2% 1, b;

= g =a+b,

10



Mi1 + Mip + i3

@ = o
Y +by) _
- SR a+h)
3
= a,»—c"z
fori=1,2,
o Mty
Bi = —%—
2
. i+b' _
o Za@rh) gL
2
= b;j—-b
for j=1,2, 3, and
Yij = Mij—H—@—pj

= a+bj—(@+b)—(ai—a)—(bj—-b)=0
fori=1,2,j=1,2,3.
22.  (a) The sum of squares due to error (SSE) is
6-1)x(03+03+03+04+05+05+03+04+04+04+0.3+0.3)
=22,

(b) The grand mean (total mean) X is

28+30+27+25+26+28+27+28+3.0+28+27+25
12

32.9
= —— = 2.7417
12 ’

and the sample means for the four major groups are

28+3.0+27 85

— =~ 2.8333,
3 3
2. . : .
25426428 19 )
3 3
27428430 85, ey
3 3
and 28+27+25 8
+3—+ = 3 ~ 2.6667.

The sum of squares due to major, denoted by Ssmaj or» 18

3x6x[(8.5/3-32.9/12)" + ((7.9/3 - 32.9/12)
+(8.5/3 = 32.9/12)” + (8/3 - 32.9/12)*]
= 0.615.

(c) The sum of squares due to interaction (SSI) will be computed using

SSI = SSy(a1 — SSE = SSpaior — SSyear.

11



(d)

(e)

where SSyear denotes the sum of squares due to year. Since Ssmajor has
been computed in Part (b), we will first compute SSyear and then compute
SStotal — SSE to obatin SSI.

To compute SSyear, note that the sample means for the three year groups
are

2.8 +2. . .
+ 5+27+28:2'7’
4
3.O+2.6+2.8+2.7:2.775’
4
and 27+28+30+25
.+.Z.+.=2'75’

SO SSyear is

4% 6x[(2.7-329/12)* + (2.775 - 32.9/12)°
+(2.75 - 32.9/12)]
= 0.07.

Next, we compute SS;i.1 — SSE. Let X ; be the sample mean of the data
in the group of the i-th major and the j-th graduation year fori =1, ..., 4,
j=1,2,3. Then

SStotal] — SSE 6(X;:; — X6)?

4 3
i=1 j=1

L

= 624:2)‘(,%]—72)25

i=1 j=1

J

= 6x[2.8+3.0°+2.7*+25%+26%+2.8
+2.77 +2.82 +3.0° + 2.8 + 2.7 + 2.57]
72 % (32.9/12)?

= 1.735,

so the sum of squares due to interaction (SSI) is

SStotal — SSE - SSmajor — SSyear
=1.735-0.615-0.07 = 1.05.

The degree of freedom for the sum of squares due to interaction is (4 —
D@B-1)=6.

SSmajor/@ — 1)

F —
SSE/(4 X3 x 6 —4x3)
0.615/3
7760 0.5591 < f0.05.3.60 0,

so we cannot conclude that the initial mean salaries for the four majors are
not all the same at level 0.05.

12



(f) The degrees of freedom for SSI and SSE are 6 and 4 X3 x 6 —4 x 3 = 60
respectively, so

SSI/6
SSE/60
1.05/6

= —— x~04773 =2.25.
22/60 < f0.05,6,60

F =

We cannot conclude that there is a major-year interaction effect on salary
at the 0.05 level.

23. (a) Direct calculation gives

Z X ; — Xo)(Xi. — X6)

k
=1 1

b
Jj=

4

kb
= 52 Z(Xi,j -Xi + Xi - Xo)(Xi. — Xo)

k b k b
= ) Xej- X)X - Xo) +€ ) Y (X - Xo)(Ki - Ko)

i=1 j=1 i=1 j=1

SSA

k b
fZ(X,-. - X5) Z(X,,j - X.)|+SSA
i=1 =1
2
=0
= SSA,

where the last equality follws from

b
= ) > (K- X+ X - X)X, - Xo)

Il
~.
Il

k b k b
= 0 Y XK= XN =Xy + ) > (X = X)X - Xo)

i=1 j=1 i=1 j=1

SSB

b k
= fZ(X, ~ Xg) Z(X,»,, ~X,)|+SSB
j=1 i=1
=0

= SSB,

13



where the last equality follws from

SSI = i i i()_(i’j - X,‘. - X.j + Xg)z

= fz Z(Xi,j - X6 — (X — Xg) - (X, — Xg))?

k b
= fZZ(X,,—XG) +€ZZ(X — %) +€ZZ(X

i=l j=1 i=1l j=1 i=1 j=1

- X6

=SSA =SSB

b k b
2033 Ky = X)X = Ro) -2 > D (Kij = X)X — Xg)

i=1 j=1 i=1 j=1

-SSA (by Part (a)) _SSB (by Part (b))

k
2 Z(X - X)X - Xo)
i=1 j=

= fzk: Zb:(x,,-—xc) ~ SSA - SSB+2€Z Z(X - Xo) X, - X¢)
i=1 j=1

lljl

= fzk: Zh:(x,-,j — X;)* — SSA — SSB +2¢ Z(;‘(,, — Xo) Zb:(;zj _ %)

i=1 j=1

SO

k b
SSI = 52 Z(X,-,j — X5)* — SSA — SSB.

i=1 j=1
(d) Apply (12) in the solution to Problem 15 with
Wi, . oWl ={Xijm:ief{l,... kl,jel{l,....,b},me{l,...

and )
{W19'°"WWL} :{Xi,j . ie{1""9k}7j€{1"-~3b}7}»

a7

respectively, and for each i € {1,...,k}and j € {1,...,b}, apply (12) with

{Wl" . »Wm} = {Xi,j,l»' "’Xi,j,{'}’

14



24.

then we have

kK b kK b
SStotal = ) Y, > Kijm = Xo) = [ ZXij,m] — kbE(Xe), (18)
i=1 j=1 m=1 i=1 j=1 m=1
k b k b
Z(X,-,,»—XGf:[Z i) | - kb(Xo ), (19)
i=1 j=1 i=1 j=1

and foreachie{l,...,k}and je{l,...,b},

4

¢
Z(Xi,j,m -X))" = [ Xiz,j,m] - (X)),
m=1

m=1

which gives

kK b ¢ kb
SSE = Z Z D K =X’ = Z Z

Replace ¢ Y, 34, (X;; — X)? in (17) with SSyqa1 — SSE, then (17) be-
comes
SSI = SS¢yta1 — SSE — SSA — SSB,

which gives
SS¢ota] = SSA + SSB + SSI + SSE.

(a) No. The p-value is 0.55981 > 0.01.

(b) No. The p-value is 0.01032 > 0.01.

(c) Yes. The p-value is 2.548 x 107 < 0.01.

(d) The degrees of freedom for the sum of squares due to the drug factor is 4,

so the drug factor has 4 + 1 = 5 levels and there are 5 types of drugs.

(e) The degrees of freedom for the sum of squares due to the exercise factor

is 3, so the exercise factor has 3 + 1 = 4 levels and there are 4 types of
exercises.

(f) The total number of participants is 4 +3 + 12+ 80 + 1 = 100.

25. We will use the following results in the solution to Problem 22 for this problem.

(i) The SSE in the two-way ANOVA is 22 with 60 degrees of freedom.
(i) SSiyta1 — SSE = 1.735 in the two-way ANOVA, so the total sum of squares

in the two-way ANOVA is
- @ -
SStotal = 1735+ SSE = 1.735 + 22 = 23.735

with 71 degrees of freedom.
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(iii) The sum of squares due to major in the two-way ANOVA is 0.615 with
three degrees of freedom.

(a) The total sum of squares and the sum of squares due to major in one-way
ANOVA are the same as those in two-way ANOVA, which are 23.735 and
0.615 with degrees of freedom 71 and 3 respectively (based on (ii) and
(ii1)). Thus the sum of squares due to error in the one-way ANOVA is

SSE = SS(o(a1 — SSmajor = 23.735 - 0.615 = 23.12.

(b) The total sum of squares in the one-way ANOVA is 23.735, as explained in
Part (a).

(c) The sum of squares due to major and the sum of squares due to error in
one-way ANOVA are 0.615 and 23.12 respectively from Part (a), so the
observed F statistic is

0.615/3

Since
2.68 = f0.053,120 < f0.053.68 < f0.053.60 = 2.76,

0.6029412 < fy0s36s. Therefore, we cannot conclude that inital expected
wages for students of different majors are not all the same at the 0.05 level
based on the one-way ANOVA.

26. (a) The total sum of squares in the one-way ANOVA is the same as that in the
two-way ANOVA in Problem 24), which is

43.784 + 127.562 + 33.027 + 247.244 = 451.617.

(b) The sum of squares due to the drug factor is the same as that in the two-way
ANOVA in Problem 24), which is 43.784 with 4 degrees of freedom. Thus
the SSE in the one-way ANOVA is

(@
SSiotal —43.784 = 451.617 — 43.784 = 407.833.

(¢c) From Part (b), the sum of squares due to the drug factor in the one-way
ANOVA is 43.784 with 4 degrees of freedom, and the SSE is 407.833 with
100 — 1 — 4 = 95 degrees of freedom since the total number of participants
is 100 from Part (f) of Problem 24. Therefore, the observed F test statistic
in the one-way ANOVA is

43.784/4

= — 7 2549745,
407.833/95 549745

From the table of 0.99 quantiles for F distributions,

3.48 = foo14,120 < fo.01,495 < foo1.460 = 3.65,

s0 2.549745 < fo.01.4.95 and we cannot conclude that not all drugs have the
same effect on weight loss at level 0.01 based on the one-way ANOVA.

27. (a) The total sum of squares is

43.784 + 127.562 + 33.027 + 247.244 = 451.617.

16



(b)

(©)

28. (a)

The SSE is

451.617 —43.784 — 127.562(= 33.027 + 247.244) = 280.271.

The degrees of freedom for the SSE is 12 + 80 = 92. The observed F
statistics is 43.784/4

——————— =3.593065.

280.271/92

From the R output, P(F(4,92) > 3.59) = 0.009128695 < 0.01, so
f(),()1,4,92 < 3.59 < 3.593065

and we can conclude that not all drugs have the same effect on weight loss
at level 0.01 based on the two-way ANOVA without interaction.

Note that the table “0.99 quantiles for F' distributions” only gives two rele-
vant quantiles f0.01,4,60 =3.65 and f0'01’4,120 = 3.48, which implies

3.48 < fio1400 < 3.65. 1)

However, we cannot tell whether fyo;492 < 3.593065 from (21) and it is
necessary to use the R output for P(F(4,92) > 3.59) to solve this problem.

The grand mean (total mean) X is
28+30+27+25+2.6+28+27+28+3.0+28+2.7+25
12
32.9
= —— ~2.7417,
12

and the sample means for the four major groups are

28+3.0+27 85

3 3°
25+2.6+2.8 7.9
3 T 37
27+28+3.0 B 8.5
3 T 37

and
28+4+27+25 8

3 3
The sum of squares due to major, denoted by Smaj or» 18
3% [(8.5/3=32.9/12)> + ((7.9/3 — 32.9/12)*
+(8.5/3 —32.9/12)* + (8/3 — 32.9/12)*]
= 0.1025.

To compute the sum of squares due to graduation year, note that the sample
means for the three year groups are

28+25+2.7+28 _
2 =

30+26+2.8+2.7
4

2.7,

=2.715,

17



(b)

29. (a)

(b)

and
27+28+3.0+25

4
so the sum of squares due to graduation year, denoted by SSyear, is

=2.75,

4% [(2.7-32.9/12)* + (2.775 - 32.9/12)*
+(2.75 = 32.9/12)%)

0.07

—~

The total sum of squares, denoted by SS (41, 18

282 +3.0%+277+252+26°+28%+27*+28°+3.0°+2.8 +2.7>+2.5 - 12(

1082.41

=90.49 -
12

The SSE is

SStotal ~ SSmajor — SSyear

1082.41 0.07

=90.49 - —0.1025 - % - 0.175

with degrees of freedom 12 -1 - (4 - 1) — (3 — 1) = 6. The observed F
statistic (for testing the main effect of major) is

SSmajor/4 =1 0.1025/3

= =1.171429.
SSE/6 0.175/6

From the table “0.95 quantiles for F distributions”, foos36 = 4.76 >
1.171429, so we cannot conclude that inital expected wages for students
of different majors are not allthe same at level 0.05.

No. There is only one observation for each major-year combination, so the
SSE in the two-way ANOVA with interaction is zero and the F statistic for
testing the interaction effect cannot be computed.

Since
Xl +a—E(X1 +a) = Xl +a— (E(Xl) +Cl) = Xl —E(Xl),
we have

Cov(X; +a,Y) E[(X; +a—-EX, +a)(Y - E(Y))]

E[(X) — E(X))Y — E(Y))]
Cov(Xy,7Y).

Let,u1 = E(Xl), Mo = E(Xz) and My = E(Y), then
EXy +X2) =1 + 2 (22)

and
E(aX)) = au;. (23)

18
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Direct calculation gives
Cov(Y,X; +X5,Y) = E[(Y-EX)X +X; - EX; +X2))]

=" E[(Y —uy)X1 + X2 — (U + p2))]

= ENY = puy) (X1 — 1) + (X2 — p2))]

=  ENY —puy)Xy — )] + EI(Y — uy)(Xz — p2)]

= E[(Y - EY)X, - EX))] + E[(Y - EQ)(X2 — E(X2))]
= Cov(Y,X;)+ Cov(Y, X;)

and

Cov(Y,aX,) = EIY-puy)aX, - E(aX)))]

=" ENY —uy)aX; — auy)]

=  E[Y —py)-aXy — )]

= aE[(Y — puy)(X1 — )]

= aE[(Y - E(Y)(X; - E(X1))]
= aCov(Y, X)).

30. Direct calculation gives
EX)=(-1)x03+0x04+ax03=03(a-1),
EX*) = (=1)*x03+0?x04 +a*>x0.3 =0.3(a* + 1),
E(Y)=ax03+0x0.4+(—-a)x0.3 =0,
EY?) =a*%x03+0>%x0.4 + (—a)* x 0.3 = 0.64%,
and
EXY)=(-1)xax03+0x0x04+ax(-a)x03=-03a(a+1),
SO
Var(X) = E(X*)=(E(X))* = 0.3(a*+1)=(0.3)*(a—1)* = 0.3(0.7a* +0.6a+0.7),
Var(Y) = E(Y?) — (E(Y))* = 0.6a*> — 0> = 0.64°,
and
Cov(X,Y) = E(XY) — E(XX)E(Y) = =0.3a(a — 1) — E(X) x 0 = =0.3a(a + 1).

Therefore,
Cov(X,Y)

VVar(X)\VVar(Y)
—-0.3a(a+1)

10.3(0.7a% + 0.6a + 0.7) - V0.6a2
a a+1

lal Vi4a? +12a+14

Corr(X,Y)
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31.

32.

33.

Let S(b) = Var(Y — bX) for b € R, then we have

S(b) Var(Y) + Var(=bX) + 2Cov(Y, —bX)
Var(Y) + b*Var(X) — 2bCow(¥, X)

Cov(Y, X) Cov(Y, X)
Var(X) Var(X)
Since S (b) = Var(Y — bX) > 0 for all b € R, when b = Cov(Y, X)/Var(X), we

have

2 2
Var(X) (b - ) + Var(Y) - Var(X)( ) .(24)

ﬂ) >0, 5)

s)=S5 ( Var(X)
Using (24) to compute S (b) with b = Cov(Y, X)/Var(X), then (25) becomes

>0

Cov(¥, X) )2

Var(Y) — Var(X)( Var®X)

Multiply both sides of the above inequality by Var(X), and we have

5 [Cov(Y, X) 2
Var(X)Var(Y) — [Var(X)] (T(X)) >0,
which gives
Var(X)Var(Y) — [Cov(X, Y)]> > 0,
so [Cov(X, Y)]> < Var(X)Var(Y).
(@)
Cov(X,Y)
Corr(X,Y) =
orr(%. ) VVar(X) VVar(Y)
0.5
= ——=1.
V1+0.25
(b)
Var(X -=2Y) = Var(X)+2Cov(X,-2Y) + Var(-2Y)

= Var(X) +2(-2)Cov(X,Y) + (—2)2Var(Y)
1+ (=4)(0.5) + (4)(0.25) = 0.

Since Y = a + bX, wherea =2 and b = 3 > 0, we have

Cov(X,Y) = Cov(X,a + bX)

Problem 2
roblem 292) - bx)

= bCov(X, X) = bVar(X)
and
Var(Y) = Var(a + bX) = Var(bX) = b*Var(X).
From the definition of correlation and the above calculation, we have
Cov(X,Y)

VVar(X)Var(Y)
bVar(X) _ b

Var(X)b2Var(X) 10l

Corr(X,Y)

since b > 0.
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34. In the following calculation, we will use the assumption that the kb random vari-
ables )‘(w.; i=1,..,k j=1,...bareindependent with common variance o?/e,
which implies that

2 0D = (i V)
Cov(}_(i,ﬁ)_(i/’j/) — { o /f if (l, J) = (1 ,J )’

0 otherwise.
(@ Fori=1,..,k, j=1,...,b,
_ — S Xz 1+ + Xib
COV(X,"]',X,'.) = Cov Xi,j’ b -
_ 1 (o2 o?
= —C Xi ',Xl =5\—> 1= 7
ovXip Xip) = ( ¢ ) bt

(b) Fori=1,...k j=1,...b,

Cov(X;j,Xg) = Cov

(c) Forj=1,...,b,

COV(}_(,]', XG)

1l
Q
Q
<
———
| =
Lo
- I
Q

k
1 _
= % él COV(X,"J',XG)
k
Part (b) 1 ot o
= % E _ =,

(d) Since X;. = Z?,zl Xi /b, X1, ..., Xip are independent, and Var(X; ;) =
0%/, we have

1\’ & 1 (o? o?
Var(X;) = (Z) D Var(Xy) = = (7) b= (26)
j=1

From Equation (11) given in Part (d) of the problem, Cov(X;. — X, X.; —
Xs) =0, so

COV(X,'. - XGaXi,j - X,‘. - XA]' + X(;)
= COV()_(,‘. - )_(G, ‘)_(l',j - )_(l) + COV()_(I'. - .)_(G, —.)_(] + )_(G)

=0
= Cov(X;. — Xg, Xij — X.)
= Cov(X;., X; ) + Cov(X;., —X;.) + Cov(=Xg, X, j) + Cov(-Xg, - X

o> o or o

AT AN

Here the last second equality follows from Equations (6) and (8) given in
the problem, the fact that Cov(X;., X; ;) = /(k{) established in Part (a),
and the result Var(X;.) = 02/(b¢) in (26).
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(e) In Equations (27) — (30) below, we state the results in Equations (9)—(12)
given in Part (e) of this problem:

o2

CovX; ., X)) = , 27
ov(X; j, X j) % (27)
Cov®e. Xo) = & 28
ov(X;, Xg) = e (28)
_ 0'2
Var(Xg) = —, 29
ar(Xe) T (29)
and
o 30
COV(X,'.,X.]) = Eﬁ ( )
Then
COV(X,'. - XG,XG)
= Cov(X;., Xg) — Cov(Xg, Xg)
~————
=Var(Xg)
2 2
(28),29) O o
2 - = 1
kbt kbt 0. (b
COV(X[. - XG, X.j - XG)
= COV(X,’. - XG,X.]‘) - COV(X,'. - XG,X(;)
[y S
(3:1)0
=  Cov(Xi,X,) - Cov(Xg, X))
2 2
Bo)) O o
= —_— T = 0 32
kbt kbt (32)
and
COV(X,‘. - Xg,}_(i’j - )_(,'. - XJ + Xg)
= COV(X,‘. — X(;, X[J - X,) — COV(X,'. - Xg,)_(.j — Xg)
(3:2)0
= C()V(X,‘.,X,"J‘) - COV(X,’.,X,‘.) —COV(XG,X,"J‘) + COV(XG,X[.)
ST
=Var(X;)
@a@mey o o o ot
B bt bt kbt kbl
fori=1,....,kandj=1,...,b.
35. By assumption, we have
Cov(Zg,Zi — Z5) =0 (33)
fori=1,..., kand
Cov(ZG,Zj -7Z5)=0 (34)

for j =1, ..., b. We will first establish the following results:

k k
Cov {Z aiZ;., X] = Cov(Zg, X) Z a; (35)
=1

i=1
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for a random variable X and

b b
Cov (Z chj,X] = Cov(Zg, X) Z ¢j

=1 =

for a random variable X. To prove (35), note that

Cov

I
N

S

9]

Q

N

>

= Zai COV(Zi.—ZG,X)+C0V(ZGsX)
N—— —————

i=1
33
(:)0

k
= CovZe,X) ) ai

so (35) holds. Similarly,

b
Cov[z ciZj, X

J=1

~.
I

34
39,

b
Cov(Zg, X) Z cj,

j=1
so (36) holds.

Now we are ready to prove the results in Parts (a) and (b).

(a) Apply (35) with X = Zg, then

Cov (Zk: a;Z;. ,Zg] = Cov(Zg,Zg) Z a; = Var(Zg) Z a;,

i=1 i=1

SO

k k
Cov {Z a,-Z,:,Zg] =0= Var(Zg) Z a; =0,
i1

i=1

which implies that Zle a; = 0 since Var(Zg) > 0 by assumption.

23
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k
< Z a; (apply (35) with X = 3°_ ¢,Z;

Q
2
—_——
M~
£
NI
M-
[
\NI
<.
I} Il
M- S
o =
& QN]
S -
M- %
ﬁ ~.
R
;.
N

Sufoniz

b
Z ¢ (apply (36) with X = Z
i=1 =1

J

o5 3:0)

J=1

36. (a) Apply the result o w =20 (wi— w)? +nw? with w; = Y; —a—bX;, then
wehavew =Y —a — bX and

i(ﬁ- —a-bX)?
i=1

:Z(Y,-—a—in—(Y—a—b)_())2+n()_’—a—b)_()2

i=1

= Z(Yi — V= b(X; - X)) + n(¥ — a - bX)>
i=1

= Z(Yi -7 -2 Z(Yi - )X - X) + b2 Z(x,- —X)? +n(Y —a-bX)>
i=1 i=1 i=1
= (n—1)(S} - 2rSxSyb +S3b*) + n(Y — a— bX)".

Here the last equality follows from the definitions of Sy, S x and r:

Sr=47 _1Z<Y P,

IR o P
Sx—\n_ll;:(xz X2,
and _ _
LY = DX = X)/(n = 1)
SxSy '

(b) Let
S(b) = Sb* —2rSxSyb + 52,

then from the result in Part (a),

Z(Y,- —a—-bX)?=m-1DS®B) +n(¥ —a-bX)> (37)

Note that when Sx # 0, S(b) is a quadratic function of b with a global
minimum. Solving S’(b) = 0 gives

2bS% —2rSxSy =0,
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which gives b = rSy/Sx = b, so S (b) is minimized when b = b. From

(37), we have

vV

D i—a=bXy > (n-1S®)
i=1

\%

(n=DS®) +n(Y —a-bX)*
————
=0 since a=7-bhX

@ Z(Yi —a-bX;)’ ,

=1 (a,b)=(a,b)

so Y, (Y;i—a- bX;)? is minimized when (a, b) = (&, b).
(c) Since Y; = ag + boX;, we have

n

_ 1 _
Y:—}Em0+mxg=ao+mx

3
and
Yi - Y =ag + boX; — (ap + boX) = bo(X; — X)
fori =1, ..., n. Therefore, the sample stanard deviation

1 1 _
Sy = \m;(n—w

n

=\ ni - D [bo(Xi — )P

i=1

= |bolSx,
and the sample correlation

Y (X =X = 1)/(n- 1)

SxSy
69 i (Xi = X)[bo(Xi = X)]/(n — 1)
B SxSy
B boSg(
T SxSy
@y boSy b
SxlbolSx  Ibol’
Thus
5= Sy
Sx
@04 bo  1bolSx _b
= — . =2 = p,
lbol  Sx
and
a = Y-bX
(38).(42)

ap + boX - boX = ay.

We have verified that (&, b) = (ag, by).
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(d)

RSS

= Zn:(YL - & - Z;X[)z
i=1

= Zn:(yi — (Y - bX) - bX;)
i=1

- Zn:(y,- - ¥ - b(x; - X))
i=1

YR AT Y e S NP g7 S )
i=1 i=1 =1

Since

1 n _ _
— Z](Y,- ~ V)X - X) = rS xSy,

dividing both sides of (43) by (n — 1) gives

RSS

— S2 + (b)>S% - 2brSxSy

2
rSy 2 rSy
S2+=L| s2—21=L|rSyxS
Y (SX) X (SX)rXY
S2 + 1282 - 21782

S2(1 =1,

which implies that
RSS = (n— DS3(1 - r?).

37. (a) To prove the result in Part (a), we will first show that

e -aXi - X)
Z?:](Xi - )_()2 ’

b=by+ (44)

To prove (44), note that

i) _ I‘S_y _ Z?:](Xi _)_()(Yz - Y)

Sx Z?:l(Xi _X)Z

SO

b = Z?zl(Xi—X)(lii—Y)_ .
Zin (X = X)?
_ ZLiXi—X)(ao + boXi + & — (ag + boX + &) b
B (n—-1)S2 0
XX = X)(e - 8) . 21 (Xi = X)(boXi — boX)
- (n—1)S2 (n—1)S2 ‘

=0

S

X —X) (g -8
(n—1)S2
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and (44) holds.
Now we will prove the result in Part (a). Direct calculation gives

RSS = Z(Y[ —a - bXx)?
i=1

- Z(n—&—éxi—(l?—a—iy)‘())z
i=1

= D (=T -bX;- %)y

i=1

= Z(ao +boX; + & — (ag + boX + &) — b(X; — X))
i=1

= D@ —&=(b-by(X; - X))’
i=1
= > @ -8 -2 - 8)b - bo)Xi — X) + [(b - b)(X; - D)}

i=1

= | Dl -8 -20b-by) (Z(e,- —B)(X; - )‘0] +(b=bo)? Y (X; - X)?
i i=1 i=1

LD -2 | -2~ bo? Y (X = X7+ (b - bo)* Y (X; - X7
i=1 i=1

S e R S
i i=1

———
=(n-1)$2

2
@ [Z 8§]_ (viep | ZmE = O = %)

P Jn—-1S%

2
_ [Zn: 82] _ (\/ﬁé)g _ Z?:l(xi - )_()8,-

Jo-ns2 |

where the last equality follows from the result that

i=1

Z(X[ —X)E = E‘Z(X[ ~X)=0. (45)
i=1 i=1 —
=nX-nX=0

(b) From (44) in the solution to Part (a), we have

X —X)(e - &)

bobo = (n—1)S2
@ Ziny &iXi = X)
(n- 1)5)2(
It remains to show that for xy € R,
a + bxy — (ag + boxo) = & + (xo — X)(b — by). (46)
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(©)

Direction calculation gives

a + bxy — (ag + boxo)

=Y = bX + bxy — (ao + boxo)

= ag + boX + & — bX + bxo — (ag + boxo)
= bo(X — x0) —b(X — x0) + &

= (x0 — X)(b — by) + &,

so (46) holds.
From Part (b), we have

b b= "aXi—X)
T T m-nsy

To obtain Cov(&, b), we will first compute Cov(E, g;):

1
Cov(g,g) = ;COV(81+"'+SV,,8,')
Covene) _ o7
B n a n ’
Thus
Cov(g,b) = Cov(s,b—by)
’-Z_ l‘X,'—X
= Cov(é, 21 &K~ X) ))
(n- l)Si
1 u _
= — Xl'—X Cov é,(‘;‘j
o Zl< )Cov (&, )
1 . _ o2
= — X -X)—=
(n- 1)S§ ;( ) n
1 o < _
= — .= X;—X)=0. 47
T ”Z( ) 7)
——
=nX-nX=0
To prove
. o2
Var(h) = —=2—, 48
) = o (48)
note that from Part (b), we have
b— by = ?:18i(Xi_X),
(n— 1)S§
o)
. "oeXi—X
Var(b) = ar(—zl_lg(l )J
(n— 1)S)2(

1 - _
_ Var(e;(X; — X)) (since g, ..., g, are independent
[(n-nsg(]z; (&:(X; - X)) (since & pendent)
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38. (@

(b)

= —[(n EETCEET Z(X X)? Var(s,)
X

—0'9

_ L 2
- [(n—l)SXPZ(’ %)

———
=(n-1)$2
2
0-8

(n—1)S%

and (48) holds.

Next, we compute Var(a + f)xo) for a given xp:
Var(a + lAJxo) = Var (& + 5x0 —(ag + boxo))

=" Var(&+ (xo - X)(b - b))

= Var(g) + Var((xg — X)(b — by)) + 2Cov(&, (xg — X)(b — by))
= Var(d) + (xg — X)*Var(b — by) + 2(xo — X)Cov(&, b — by)

0_2

=  —£ 4 (x—-X)?Var(h) + 2(xy — X) Cov(g, b)
n ——

(47

=0

0_2

= £ 4 (x0-X)*Var(h)
n

@ oz (x—X) ol 2(1 (xo—)_()z)
e Tt T |

n (- 1S2 (n—1)s2

Since the distribution (X, Y)7 is a bivariate normal distribution and

()T o))

the distribution of (Y — bX, X)7 is also a bivariate normal distribution. Thus
Y — bX and X are independent if and only if Cov(Y — bX, X) = 0. Solving

Cov(Y — bX, X) = 0 for b gives Cov(Y, X) — bCov(X, X) = 0, so
_Cov(Y,X) 6 2

T CovX,X) 9 3
and Y — (2/3)X is independent of X.
2 4

2
E(U) = E(Y = 2/3)X) = EQ) = JEX) = 2= 31 = 5.

Var(U) = Var(Y - (2/3)X)
Var(Y) + Var(—=(2/3)X) + 2Cov(Y, —(2/3)X)

2\ 4
16 + -3 Var(X)—§Cov(Y,X)

4 4
16+2.9-2.6=12.
97773
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39. (a) The sample correlation is

r= _ 02895 =0.2037137.

V0.383 - 5.273

(b) The test statistic is

68 - 0.2037137
T=10-2) —— = = 1.715847.
Vi-r2  v1-0.20371372

Since 19052702 = to.025.68 = 1.995 > [1.715847|, we cannot conclude that
b # 0 at level 0.05.

40. (a) For brevity, will use “price” and “age” to denote the car price and car age
respectively. The estimated regression equation is

where

. —06-19
b= = -0.518
22
and 6
4=69-5-89=69- (%) .89 =11512,

so the estimated regression equation is
price = 11.512 - 0.518 - age.
(b) The residual sum of squares (RSS) is

(30 — 1)5%rice (1= (-0.6)*) =29 - (1.9)* - 0.64 = 67.0016,

where S price is the sample standard deviation of the observed car prices.

41. Substract 88 and 98 from the Stock A prices and the Stock B prices respectively,
then we have the modified samples: (0.3, -0.4,-0.3,-0.1,0.5) and (0.4, —0.4, -0.3, -0.1,0.4).
For the two modified samples, the sample means are

03-04-03-01+05

0
5

and
04-04-03-01+04 0

5 s

and the sample variances are

(0.3)% + (=0.4)? + (=0.3)2 + (=0.1)> + (0.5)> 0.6
= =015
4 4
and 2 2 2 2 2
(047 + (Z04 + (=037 + (-0.)° + (047 _ 058 _ o

4 4
The sample covariance between the two modified samples is

0304+ (=04) - (-04) + (-0.3) - (-03) + (-0.) - (-0.) +05-04 _0.58 _
4 T4 T
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42.

so the sample correlation between the two modified samples is

0.145
V0.145 - 0.15

The sample correlation between the orginial samples is the same as the sample
correlation the two modified samples, which is 0.9831921.

= 0.9831921.

Let D and S p be the sample mean and sample standard deviation for the sample
(D1, D, D3, Dy), then for a given distance D,

. 1 - D)?
Var(a + bdy) = o (4_1 + (do—))

2
RAYS
The average variance of estimated expected signal losses is

1< dy — D)
_ZVar(a+bdo) = §Z (4 (03S2)]

do=6

Apply the fact that

=

wi= ) (wi— vT/)z + n(w)?
=1 i1
with n = 3 and (W, wp, w3) = (6 — D, 7 — D, 8 — D), then we have

8 8
D>.do-Dy = > (dy-D—-(7-D)’+3(-Dy

doy=6 doy=6

8
Zk%—7f+x7—bf=2+a7—bﬁ

do=6
SO 8 .
1 . 1 2+3(7-D
5(;Var(&+bdo) = ag(z + #]
bet 2+3(7 - D)?
S (D1, D2, D3, Dy) = T’

then the average variance of estimated expected signal losses is minimized when
S (D1, D,, D3, Dy4) is minimized. Direct calculation gives

4+6+8+10)/4=7=05+6+8+9)/4,

24 3(7 =77 2
4 1 = = —
$(6.8.10) = T T G TP (0=~ 20°
24 3(7=7)2
S(5.6,8.9) = i G} -

G-D*+6-72+@8-=7)72+(-7)7? 10°
It is clear that
$4,6,8,10) < 5(5,6,8,9),

so the (D1, Dy, D3, Dy) in (a) gives the smallest average variance of estimated
expected signal losses.
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43. (a)

(b)

()

(d)

For brevity, will use “price” and “age” to denote the car price and car age
respectively. The estimated regression equation is

price = a + b - age.

where 0.6- 1.9
h=—"""-_0518
22
and 0619
4=69-h-89= 6.9—(%)-8.9 = 11512,

so the estimated regression equation is
price = 11.512 — 0.518 - age.
The residual sum of squares (RSS) is

(30 — 1)SfJrice (1 =(=0.6)>) =29-(1.9)*>-0.64 = 67.0016,

where § e 18 the sample standard deviation of the observed car prices.

pric
A 95% confidence interval for the coefficent of car age is given by

~ 6-2
b+t 2\ 30T (2
0052302 \(30 21 2.2)2

where l; =—-0.6-1.9/2.2 from Part (a), 10.05/2,30-2 = 10.025,28 = 2.048, and

52 - RSS
e 30-2
— 1)(1.9)%(1 = (=0.6)?
= (30 - 1) 390)_(2 (=06y) (using the RSS formula in Problem 38(b),
SO
G2 ~ (30 — 1)(1.9)2(1 — (=0.6)?) 1
30-1)-(22? 30-2 (30-1)-(2.2)?
_ 19 [1-(=0.6)
22 28

The 95% confidence interval for the coefficient of car age is

~06-19 19 [1-(-06)
2y XN T

which gives [-0.786, —0.251]. Using the open interval (—0.786, —0.251) as
a 95% confidence interval is also fine.

A 95% confidence interval for the expected car price when the car age is 8
is given by

I _®-agey
30 © (30— DS3ge

s

a+b-8x19051230-20¢
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(e)

where

&+B'8=6.9—(_0'6.1'9)-89 -0.6-19 _ 16.202

22 22 "7 22

10.05/2,30-2 = 10.02528 = 2.048,

X \/ (30 — 1)(1.9)2(1 — (—0.6)2)
0s =
and

30-2 (from the solution to Problem 36(b)),

Og.|=x<
30 (30— DS2ge 30 -2 30 292272

1.9 [105.3824
2.2 840

The upper bound for the 95% confidence interval is

N IR \/(30—1)(1.9)2(1—(—0.6)2) 1, (8-892
1.9

16.206 1.9 105.3824

and the lower bound for the 95% confidence interval is

16.206 1.9 105.3824
5 2.048 - 2\ 50 * 6.740,

so the 95% confidence interval is [6.740, 7.993].

A 95% prediction interval for car price when the car age is 8 is given by

S R 1 (8 —age)?
a+b-8+t 0O 1+ —=+ ——=—
0.05/2,30-2 \/ 30 T G0 I)Sglge

where

. A -0.6-1.9 -0.6-1.9 16.202
a+b8—69—(T)89 20 c6 = 20 5

10.05/2,30-2 = f0.025,28 = 2.048 and

A I - \/ B0- DL - (<067 [ 1 8-89p
‘78\/1+%+ (30~ DS 3ge 30-2 \/1+ 30 " 29- 227

1.9  /2800.2944
2.2 840

The upper bound for the 95% prediction interval is

16.206 1.9 2800.2944

and the lower bound for the 95% prediction interval is

16.206 19  [105.3824
2T 0,048 =2 - 4/ — 2 £ 4137,
22 04833 840 37

so the 95% predition interval is [4.137, 10.596].
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44.

(f) The observed T statistic is

V30 -2 ($) = -3.968627
V1= (=0.6)?

and f0,05/230-2 = to.025.28 = 2.048 < | —3.968627|, so we can conclude there
is a linear relation between car price and car age at level 0.05.

(g) (~0.6)> = 0.36, s0 36% of variation in car sale price can be explained by
car age.

(a) The p-value is 0.0121 > 0.01, so we cannot conclude that there is a linear
relation between height and weight at level 0.01.

(b) The estimated regression equation is
weight = —27.2405 + 0.4489 x height.

(c) Since the multiple R-squared is 0.2439, 24.39% of the variation in weight

can be explained by height.
[RSS
—— =4.314,
23

(d)
so the residual sum of squares (RSS) is 23 - (4.314)> = 428.0437.

(e) A 95% C.I. for the coeflicient of height is 0.4489 =+ #( 2523 X 0.1648, where
t0.02523 = 2.069. The lower bound of the 95% C.I. is

0.4489 —2.069 x 0.1648 ~ 0.108
and the upper bound of the 95% C.I. is
0.4489 +2.069 x 0.1648 ~ 0.790

The 95% C.I. for the coefficient of height is [0.108, 0.790].

45. Note that when k = 1 and (X;1,...,X1.) = (X1,..., Xp),

1 Xl,l
1 - 1
#\T' * _ . .
(X X" = ( Xip o Xna ) :
1 X
1 X
1 1 .
- (Xl X, :
1 X,

n i1 Xi
= n X; nox2 |

i=1 %
so the covariance matrix of 3 is

n nXl'

i=1

-1
?:1 Xi er‘l:l Xi2 ) - an’zl X[Z - (Z:’l:l X;)?

TH(X) X = aﬁ(

34

ol L X
- Z?:] Xi

_\n
i=1
n
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46.

Since Var(ﬁ’l) is the (2, 2)-th element of the covariance matrix of B,

2

R o
Var(g) = NS X (O X ‘n
ol
XL X2 - n(Z, Xi/n)?
o3
S XL - XY
o;

~ (n-DSY’
where X = 37, X;/nand (n—1)S% = S (X — X)2. Therefore, when k = 1 and
X115---.X10) = (X1,...,X,), the Var(5,) computed using the (2, 2)-th element
of

TA(XHT X
is the same as the Var(h) given in Problem 37(c).

(a) The estimated regression equation is
price = 160.90813 — 6.77199 - age — 0.13038 - mileage.

(b) Based on the value of multiple R-squared, 21.81% of the variation in price
that can be explained by age and mileage.

(c) Yes. The p-value for the F testis 0.01056 < 0.05, so we can conclude that
the coefficients for age and mileage are not all zero at level 0.05.

(d) No. The p-value is 0.0278 > 0.01, so we cannot conclude that the coeffi-
cient for age is not zero at level 0.01.

(e) An observed 95% confidence interval for the coefficient of mileage is
—-0.13038 = 10.05/2,n-1-k * 0.06114,

where n — 1 — k = 37 since the residual standard error has 37 degrees of
freedom, so 10.05/2,n-1-k = 10.025,37 = 2.026. Plug in 10.05/2,n-1-k = 2.026 in
the formula for the 95% confidence interval, then the upper bound of the
interval is

—0.13038 +2.026 - 0.06114 = —-0.00651036

and the lower bound is
—0.13038 — 2.026 - 0.06114 = —0.2542496
and we have the 95% confidence interval for the coefficient of mileage is
[-0.2542496, -0.00651036].
(f) Sincen—1-k=37withk=2,n=37+1+2 =40.

(2) VRSS/37 = 36.38, so the residual sum of squares is RSS = 37-(36.38)? =
48969.66.

(h) The regression sum of squares SSreg satisfies

__>OT81 _ Fvalue,
RSS/(n—1—-k) = ‘&4
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47.

48.

where k =2andn—-1-k =37, s0

SS 2
_ SSreg/2 -5.16
37 -(36.38)2/37

and the regression sum of squares SSreg is 5.16 - 2 - 37 - (36.38)%/37 =
13658.57.

(i) The total sum of squares is

SSiotal = RSS+SSreg = 37-(36.38)*+5.16-2-37-(36.38)*/37 = 62628.23.

Note. For the computation of SS;,; and SSreg, one can also use

RSS
SStotal

and RSS = 48969.66 to find SS;,; = 48969.66/0.7819 = 62629.06 and then
compute

=1-0.2181 =0.7819

SSreg = SSiotal — RSS = 62629.06 — 48969.66 = 13659.4.

In the first linear regression model where V2, V3 and V4 are used as explanatory
variables to explain V1 ((V17V2+V3+V4)), the p-value for the overall F test is
less than 2.2 x 1071°, which gives strong evidence that the coefficients of V2,
V3 and V4 are not all zero, which means V1 can be explained by some nonzero
linear function of V2, V3 and V4. However, none of the coefficeints of V2, V3
and V4 is significant at level 0.05 (the p-values for ¢ tests are 0.147, 0.665, 0.284,
respectively), which suggests that there is a problem of colinearity and it is better
to use remove some explanatory variable from the model. If we try to remove
one explanatory variable from the regression model, we may consider one of the
following three linear regression models:

(V17Vv2+V3)
(V17Vv2+V4)
(V17V3+V4)

The multiple R-squared values for the above three models are 0.9626, 0.963 and
0.9622, respectively, so it is reasonable to choose the linear regression model
with the largest multiple R-squared value, which is the model (V17V2+V4) since
V1 can be slightly better explained by V2 and V4 than by V1 and V4 or by V3 and
V4.

We will apply chi-squared goodness of fit test to solve this problem. We first
compute the probabilities that a N(47,40?) variable falls in the 5 salary ranges.

P(N(47,40%) <25) = P(N(0,1) < (25 —47)/40)

P(N(0,1) < -0.55)
0.5 -0.2088 = 0.2912.

P(25 < N(47,40%) < 50)

P((25 — 47)/40 < N(0, 1) < (50 — 47)/40)
= P(=0.55 < N(0, 1) < 0.075)

~ P(-0.55 < N(0,1) < 0.08)

= 0.2088 + 0.0319 = 0.2407.
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49.

P(50 < N(47,40%) < 75) P((50 — 47)/40 < N(0, 1) < (75 — 47)/40)
= P(0.075 < N(0,1) < 0.7)
~ P(0.08 < N(0,1) <0.7)

= 0.2580 -0.0319 = 0.2261.

P(75 < N(47,40%) < 100) = P((75 — 47)/40 < N(0, 1) < (100 — 47)/40)
= P0.7 < N(@,1) < 1.325)
~ P(0.7<N(@,1) < 1.33)
= 0.4082 — 0.2580 = 0.1502.

P(N(47,40%) > 100) P(N(0, 1) > 1.325)
P(N(0,1) > 1.33)

0.5-0.4082 = 0.0918.

Q

The test statistic for the chi-squared goodness of fit test is

(90 — 1000 - 0.2912)? , (450 - 1000 0.2407)>
1000 - 0.2912 1000 - 0.2407
(190 — 1000 - 0.2261)> , (140 - 1000 0.1502)>
1000 - 0.2261 1000 - 0.1502
(130 — 1000 - 0.0918)?

1000 - 0.0918
= 343.3646.

The degree of freedom of the test statistic is 5— 1 = 4. The 0.99 quantile of y*(4)
is 13.277 < 343.3646, so based on the chi-squared goodness of fit test, at level
0.01, we can conclude that the distribution of the annal salary (in 10,000 NTD)
is not N(47,40%).

We will apply the chi-square test of independence to solve this problem. The
row totals are

1758 + 5619 + 1697 = 9074 and 273 + 565 + 88 = 926,
and the column totals are
1758 + 273 = 2031,5619 + 565 = 6184, and 1697 + 88 = 1785.

The test statistic is
(1758 = 10000 - (2031/10000) - (9074/10000))>
10000 - (2031/10000) - (9074/10000)

(5619 — 10000 - (6184/10000) - (9074/10000))>
10000 - (6184/10000) - (9074/10000)

(1697 — 10000 - (1785/10000) - (9074/10000))>
10000 - (1785/10000) - (9074/10000)

(273 = 10000 - (2031/10000) - (926/10000))>
10000 - (2031/10000) - (926/10000)

(565 — 10000 - (6184/10000) - (926/10000))>
10000 - (6184/10000) - (926/10000)

(88 — 10000 - (1785/10000) - (926/10000))>

10000 - (1785/10000) - (926/10000)
= 82.20876.
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The degree of freedom of the test statistic is (3 —1)(2—1) = 2. The 0.99 quantile
of)(z(2) is 9.210 < 82.20876, so at level 0.01, we can conclude that the job
function and the the annal salary range are associated.

50. We will apply the chi-square goodness of fit test to solve this problem. The test
statistic is

(1758 = 10000 - 0.2)> (5619 — 10000 - 0.5)> (1697 — 10000 - 0.2)>

10000 - 0.2 10000 - 0.5 * 10000 - 0.2
(273 — 10000 - 0.03)> (565 — 10000 - 0.06)> (88 — 10000 - 0.01)?

10000-003 _ 10000-006 . 10000-0.01
= 157.7304.

The degree of freedom of the test statisticis 3 -2 — 1 = 5. The 0.95 quantile
of)(z(S) is 11.070 < 157.7304, so at level 0.05, we can conclude that the actual
proportions are not all the same as the proposed proportions.

51. (a) Sort the sample data and we have 1.5 < 1.9 <2 < 2.1. The rank of 2 is 3.

(b) Sort the sample data and we have 1.5 < 1.9 < 2 =2 = 2. The rank of 2 is
B+4+5)/3=4.

52. We will first establish the following result:
PO =>C,) L. (49)
To see that (49) holds, for a € (0, 1), let
So =1k : kisaninteger and P(D > k) < a}.

Then, by definition, C, is the largest integer in S.', s0C, €S,, which implies
(49).

To show that

C>C, o P@D=>C)<a, (50)
we will show that

C>2C,=>PD>0)<a (629
and

PDO>C)<a=C=>C,. (52)

Suppose that C is an integer. Then

(49)
C>2C, = PDO20O)<PD2C,) < a,
so (51) holds. Moreover, suppose that C is an integer such that
PD=>=2C)<e,

then C € §,. Since C, is the largest integer in S,, we have C, > C and (52)
holds.

Since both (51) and (52) hold true, (50) holds.

Note that athe existence of C, is guaranteed since the set S, is nonempty and has an upper bound. To
see this, note that the set S, is nonempty since —1 € S,. Moreover, the set S, has an upper bound (m — 1)
since for an integer k > m, k cannot be in S, as P(D > k) =1 > a.
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53. Apply the result in Problem 52 with m = n and O = Bin(n, po), then we have

the proposed test rejects Hy at level a
& observed X > C,
& P(Bin(n, pg) = observed X) < «,

so P(Bin(n, po) > observed X) is the p-value of the proposed test.
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