Difference between special sums of squares of IID N(0,1) random variables

• Covariance. For two random variables X and Y, the covariance between X and Y is

$$E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y),$$

denoted by Cov(X, Y).

- Note. If X and Y are independent, then E(XY) = E(X)E(Y).
- Fact 1 Suppose that Z_1, \ldots, Z_ℓ are IID N(0, 1) and U_1, \ldots, U_ℓ satisfy (i) and (ii):
 - (i) For $1 \le i \le \ell$, $U_i = a_{i,1}Z_1 + \dots + a_{i,\ell}Z_\ell$ for some constants $a_{i,1}, \dots, a_{i,\ell}$.
 - (ii) For $1 \leq i \leq \ell$, $Var(U_i) = 1$; if $\ell \geq 2$, then $Cov(U_i, U_j) = 0$ for $i \neq j$, $1 \leq i, j \leq \ell$.

Then U_1, \ldots, U_ℓ are IID N(0, 1) and

$$U_1^2 + \dots + U_\ell^2 = Z_1^2 + \dots + Z_\ell^2.$$

- Fact 2 Suppose that Z_1, \ldots, Z_ℓ are IID $N(0, 1), m < \ell$, and U_1, \ldots, U_m satisfy (i) and (ii):
 - (i) For $1 \le i \le m$, $U_i = a_{i,1}Z_1 + \dots + a_{i,\ell}Z_\ell$ for some constants $a_{i,1}, \dots, a_{i,\ell}$.
 - (ii) For $1 \leq i \leq m$, $Var(U_i) = 1$; if $m \geq 2$, then $Cov(U_i, U_j) = 0$ for $i \neq j, 1 \leq i, j \leq m$.

Then, $Z_1^2 + \cdots + Z_{\ell}^2 - (U_1^2 + \cdots + U_m^2)$ is a $\chi^2(\ell - m)$ random variable that is independent of U_1, \ldots, U_m .

Proof of Fact 2. We can construct $U_{m+1}, \ldots, U_{\ell}$ such that (i) and (ii) in Fact 1 hold. By Fact 1, U_1, \ldots, U_{ℓ} are IID N(0, 1) randoma variables such that

$$Z_1^2 + \dots + Z_{\ell}^2 - (U_1^2 + \dots + U_m^2)$$

= $U_{m+1}^2 + \dots + U_{\ell}^2$,

which implies that $Z_1^2 + \cdots + Z_{\ell}^2 - (U_1^2 + \cdots + U_m^2)$ is a $\chi^2(\ell - m)$ random variable that is independent of U_1, \ldots, U_m .

• Example 1. Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, \sigma^2)$. Let \bar{X} be the sample mean and

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

be the sample standard deviation. Then

$$\frac{(n-1)S^2}{\sigma^2}$$
 is a $\chi^2(n-1)$ random variable that is independent of \bar{X} . (1)

Proof of (1). We will prove the result assuming $\mu = 0$ and $\sigma = 1$ and the proof for the general case is left as an exercise. When $\mu = 0$ and $\sigma = 1$, we have that X_1, \ldots, X_n are IID N(0, 1) random variables, $Var(\sqrt{n}\bar{X}) = 1$, and

$$\frac{(n-1)S^2}{\sigma^2} = (n-1)S^2 = \sum_{i=1}^n (X_i - \bar{X})^2 = \left(\sum_{i=1}^n X_i^2\right) - (\sqrt{n}\bar{X})^2.$$

Apply Fact 2 with $(Z_1, \ldots, Z_\ell) = (X_1, \ldots, X_n)$, m = 1, and $U_1 = \sqrt{n}\overline{X}$, then we have (1).

• Example 2. Suppose that $X_{i,j}: 1 \le i \le k, 1 \le j \le n_i$ are independent and $X_{i,j} \sim N(\mu, \sigma^2)$. Let $n = \sum_{i=1}^k n_i$. For $1 \le i \le k$, let

$$\bar{X}_i = \frac{1}{n_i} \left(X_{i,1} + \dots + X_{i,n_i} \right)$$

and

$$\bar{X}_G = \frac{\sum_{i=1}^k n_i \bar{X}_i}{n} = \frac{n_1 \bar{X}_1 + \dots + n_k \bar{X}_k}{n_1 + \dots + n_k}$$

Let $SST = \sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X}_G)^2$ and

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_1} (X_{i,j} - \bar{X}_i)^2.$$

Show that $SSE/\sigma^2 \sim \chi^2(n-k), SST/\sigma^2 \sim \chi^2(k-1)$ and SSE is independent of SST.

Sol. We will prove the result assuming $\mu = 0$ and $\sigma = 1$ and the proof for the general case is left as an exercise. When $\mu = 0$ and $\sigma = 1$, $X_{i,j}$ s are IID N(0,1). Let $Z_i = \sqrt{n_i} \bar{X}_i$ for i = 1, ..., k, and

$$U_1 = \sqrt{n}\bar{X}_G = \sqrt{n}\sum_{i=1}^k n_i \bar{X}_i / n = \sum_{i=1}^k \frac{\sqrt{n_i}Z_i}{\sqrt{n}},$$

then Z_1, \ldots, Z_k are IID N(0, 1) random variables and $Var(U_1) = 1$, so (i) and (ii) in Fact 2 hold with $\ell = k, m = 1$, and $U_1 = U_1$. Moreover,

$$SST = \sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X}_G)^2$$

$$= \left(\sum_{i=1}^{k} (\sqrt{n_i} \bar{X}_i)^2 \right) - (\sqrt{n} \bar{X}_G)^2$$
(2)
$$= \left(\sum_{i=1}^{k} Z_i^2 \right) - U_1^2,$$

so by Fact 2, SST is a $\chi^2(k-1)$ random variable that is independent of $U_1 = \sqrt{n}\bar{X}_G$.

To find the distribution of SSE, note that

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{i,j} - \bar{X}_G)^2 - SST$$

$$\stackrel{(2)}{=} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{i,j} - \bar{X}_G)^2 - \left(\left(\sum_{i=1}^{k} (\sqrt{n_i} \bar{X}_i)^2 \right) - (\sqrt{n} \bar{X}_G)^2 \right)$$

$$= \left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{i,j}^2 \right) - \left(\sum_{i=1}^{k} (\sqrt{n_i} \bar{X}_i)^2 \right),$$

which is a $\chi^2(n-k)$ random variable that is independent of $(\bar{X}_1, \ldots, \bar{X}_k)$ by Fact 2. Since SST is a function of $(\bar{X}_1, \ldots, \bar{X}_k)$ and SSE is independent of $(\bar{X}_1, \ldots, \bar{X}_k)$, SST and SSE are independent. We have shown that $SSE/\sigma^2 \sim \chi^2(n-k)$, $SST/\sigma^2 \sim \chi^2(k-1)$ and SSE is independent of SST assuming $\mu = 0$ and $\sigma = 1$.