Multiple regression

e Multiple regression. Suppose that {Y;, X;1,...,X;,}, are n observa-
tions for (Y, X1,..., X)) and

Yi=po+ /i Xig+ -+ BeXik +e (1)
fore=1,..., n.

e Matrix expression of (1). let Y be the n vector whose i-th element is Y;.
Let X be the n x k matrix whose (7, j)-th element is X; ; and let € be the
n vector whose i-th element is €;. Then (1) can be expressed as

Y=(1 X)B+e¢,
where 1is anx1 vector of 1’s, and B is the (k+1)x 1 vector (8o, 81, -+, Br) ™ -

e Assumptions.

Al. g;’s are IID N(0,02).
A2. ¢ and X are independent.
A3. (1 X) is of rank k + 1.
Note: Assumption A3 ensures that we can estimate 8 = (8o, f1, ...,
Br)T.

o Least square estimation. Let X* be the n x (k+ 1) matrix (1 X) and for
Y= (’Yoa’}/h s 7’Yk-)T7 let

n

S(y) = (Y =X*9)"(Y - X*y) = Z(Yi — Y0 =N X1i = — W Xpi)?

i=1

Then S(v) is minimized when v = B, where B can be found using the
equation )
(XY -X*B) =0,
or R
B =((X)TX) (XY, (2)

3 is called the least square estimator of 3. Let
(Bo, B, B)" = B,
Then Bj is the least square estimator of 3; for j =0, ..., k, and
YV =By + B1X1+ -+ BuXn

is called the estimated regression equation.



e The distribution of 8 = (BAO7 - Bk)T is the multivariate normal distri-
bution
N (8,02((X")TX")™),

where B8 = (Bo, ..., Br)T = (E(Bo), -, E(Br))T and o2((X*)TX*) 1 is
the covariance matrix of 3.

e The distribution for aTB = aOBO +...+ akBk. Suppose that ag, ..., ag
are known constants. Let a be the (k + 1) x 1 vector (aq, ..., ax)’ and

V=al(X1)TX")a, (3)
then Var(alf) = 02V and

aofo + .-+ arBr — (aofo + - . . + arf)
a2V

~ N(0,1).

e The residual sum of squares and the estimation of o2. The residual sum
of squares, denoted by RSS (or SSE), is defined as

RSS = Z(Yi —Bo— B X1i— - — BrXpi)®.

=1

It can be shown that

RSS
0’? NX2(n7k71)7
SO we use
N
c n—k—1

to estimate o..

e Constructing confidence interval for apfo + ... + axf. Let V be the
variable in (3) and let 6. = \/RSS/(n—k —1). Then 6. and B are
independent and we have

aoBo + ... + arfr — (aoBo + - .. + arBy)
2V

€

~tn—Fk—1).

Thus a (1 — «) C.I. for agBo + . .. + arBk is given by

aoBo + - . + arPr £ tajonr-1V/62V.



e Hypothesis testing. Suppose that ag, ..., ax are constants. Consider the
testing problem

Hy:agBo+ ...+ apfr =0 versus Hy : agfo + ...+ arfPr # 0.
Let ) )
aoBo + - - - + arB
Vo2V ’
where V is given in (3). Then the test that rejects Hy when |T| >

laj2,n—k—1 18 of level a. In particular, we can test Ho : §; = 0 by taking
a; =0 for i # j and a; = 1.

T =

e The multiple R? (coefficient of multiple determination). The multiple R?
is defined as
o1 RSS 1 RSS  SSreg
Y (Yi—Y)? SStotal SStotal’

where
— SSiotal = Doie1 (Y = Y)? is called the total sum of squares, and
— SSreg = SSiota) — RIS is called the regression sum of squares.
It can be shown that RSS < SS; .1, 80 0 < R? < 1.

o Interpretation of R2. R? is interpreted as the proportion of the varia-
tion of Y that is explained by Xj, ..., X;. To see this, suppose that
in (1), (X14,..., Xk, Ys): @ =1, ..., n are IID observations from the
distribution of (Xi,..., X, Y). By Assumptions A1-A2; we have

Var(Y) = Var(Bo + 1 X1 + -+ + BuXy) + 02,

The proportion of variation in Y explained by X7, ..., X} is
Var(Bo+ B Xa + -+ BeXy) _ o . RSS _ g2
Var(Y) T Var(Y) T SSiotal

when n is large.
Therefore, we use R? to represent the proportion of variation in Y that
can be explained by Xy, ..., X.

o Adjusted R?2. The adjusted R?, denoted by Ridj, is the quantity

B RSS/(n—k—1)
SSiotal/(n—1) -

Ridj is used because it better approximates the quantity 1 —o2/Var(Y)

than R? when n — k — 1 is large but k is not small comparing to n.
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o R2, T—% >0, TAKRMBFARPRAYHLHFTaX,, .., X B
BOLGL. AfEn —k—1 K Bk/mBAA KB, KNEHE R, R TR
R G AR

e The global test. The global test is for testing
Hy:p8,=---=pr=0versus Hy : B1, ..., B are not all zero

based on the test statistic

SSreg/]f - (TL—]{)— ].)R2

F

T RSS/(n—k-1) k(1 — R?)

F ~ F(k,n —k — 1) under Hy. The global test rejects Hy at level a if
F> fa,k,n—k—L

e Example 1. Consider the data set
https://stat.walkup.tw/teaching/statistics/data/cheese.txt

that is originally in “Introduction to the Practice of Statistics” by Moore
and McCabe (1989). The data set contains observations for each of the
four variables: taste, Acetic, H2S and Lactic. The observations for Acetic,
H2S and Lactic are concentration levels of acetic acid (8 82), hydrogen
sulfide (AL &) and lactic aid ($LER) in the samples of cheddar cheese,
and the observations for the variable taste are taste scores for the samples.
Suppose that the data file is downloaded to a file named cheese.txt in
the directory D:\temp, and we run

datal <- read.table("D:\\temp\\cheese.txt", header = TRUE, row.names=1)
taste <- datall,1]

Acetic <- datall,2]

H2S <- datlal,3]

Lactic <- datall,4]

so that the observations for taste, Acetic, H2S and Lactic are read into R
vectors taste, Acetic, H2S and Lactic respectively. After running the
command

summary (1m(taste H2S+Lactic))

we have the following R output:



Call:
Im(formula = taste ~ H2S + Lactic)

Residuals:
Min 1Q Median 3Q Max
-17.343 -6.530 -1.164 4.844 25.618

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) -27.592 8.982 -3.072 0.00481 **
H2S 3.946 1.136 3.475 0.00174 *x*
Lactic 19.887 7.959 2.499 0.01885 *
Signif. codes: 0 ‘#xx 0.001 ‘#x  0.01 ‘% 0.05 ‘. 0.

Residual standard error: 9.942 on 27 degrees of freedom
Multiple R-squared: 0.6517, Adjusted R-squared: 0.6259
F-statistic: 25.26 on 2 and 27 DF, p-value: 6.551e-07

(a) Write down the estimated regression equation based on the
above regression analysis.

(b) What is the proportion of the variation in taste that can be
explained by H2S and Lactic?

(c) Can we conclude that the coefficients for H2S and Lactic are
not all zero at level 0.057

(d) Can we conclude that the coefficient for Lactic is not zero at
level 0.017

(e) Give an observed 95% confidence interval for the coefficient of
H2S.

) Let n be the number of samples of cheddar cheese. What is n?

—
&)

g) Find the residual sum of squares.
(h) Find the regression sum of squares.

i) Find the total sum of squares.

—~

Solutions.
(a) The estimated regression equation is
taste = —27.592 + 3.946 x H2S + 19.887 x Lactic.

(b) 65.17%.
(¢) Yes; the p-value is 6.551 x 10~7 < 0.05.



(d) No; the p-value is 0.01885 > 0.01.

(e) An observed 95% confidence interval for the coefficient of H2S
is
[3.946 — t0,025727 x 1.136, 3.946 + t0.025727 X 1.136].

From the table “Quantiles for ¢ distributions”, £ 025,27 = 2.052,
so the observed 95% confidence interval for the coefficient of
H2S is

[3.946—2.052%1.136, 3.946+2.052x1.136] = [1.614928,6.277072].

(f) n—1=2427, so n=30.

(g) V/RSS/(n—k—1) = /RSS/27 = 9.942, so the residual sum
of squares is RSS = 27 x (9.942)? = 2668.771.

(h) (SSreg/k)/(RSS/(n —k —1)) = (SSreg/2)/(RSS/27) = 25.26
and RSS/27 = (9.942)?, so regression sum of squares is SSreg =
25.26 x (9.9422) x 2 = 4993.567.

(i) The total sum of squares is S.S; 1,1 = SSreg+RSS = 2668.771+
4993.567 = 7662.338.

e In Example 1, the estimated regression coefficients can be computed using
the formula in (2):

length (H2S)
Xstar <- cbind(rep(1, 30), H2S, Lactic)

#Xstar has three columns: a column of ones, H2S, Lactic

tXstar <- t(Xstar)
#tXstar is the transpose matrix of Xstar

tXX.inverse <- solve(tXstar’*/Xstar)
#tXX.inverse is the inverse matrix of the product of tXstar and Xstar

beta.hat <- tXX.inverse *}), tXstar %x), taste
#beta.hat is the vector of estimated regression coefficients

beta.hat
In addition, the estimated standard deviations of the intercept, the co-
efficient of H2S, and the coefficient of Lactic can be computed using (3)

and &.:

residual <- taste - (beta.hat[1]+beta.hat[2]*H2S+beta.hat[3]*Lactic)



RSS <- sum(residual~2)
sigma.hat <- sqrt(RSS/27) #n=30, k=2, n-k-1=27
sigma.hat #9.942

a <- ¢(1,0,0)
V <= (a %*% tXX.inverse Y%x% a)[1,1]
sqrt (V) *sigma.hat #8.982, estimated standard deviation of the intercept

a <- C(O,lso)
V <= (a %*% tXX.inverse %*J, a)[1,1]
sqrt(V)*sigma.hat #1.136, estimated standard deviation of the coefficient of H2S

a <- c(0,0,1)
V <- (a %*% tXX.inverse %x*% a)[1,1]
sqrt(V)*sigma.hat #7.959, estimated standard deviation of the coefficient of Lactic

Adding a redundant explanatory variable may increase the standard er-
rors of regression coefficient estimates.

Example 2. For the data in Example 1, create a redundant explanatory
variable x.extra by running the commands:

n <- length(taste)

set.seed (1)
x.extra <- H2S+Lactic+rnorm(n,sd=0.01)

Then, obtain the result of fitting a multiple regression model by running
the command

summary (Im(taste”H2S+Lactic+x.extra))

The output is

Call:
Im(formula = taste ~ H2S + Lactic + x.extra)

Residuals:
Min 1Q Median 3Q Max
-17.2283 -6.5576 -0.9878 4.9823 25.8567



Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -27.769 9.287 -2.990 0.00603 *x*
H2S 27.219 208.090 0.131 0.89694
Lactic 43.365 210.073 0.206 0.83807
x.extra -23.286 208.206 -0.112 0.91181

3 ’ [l [}

Signif. codes: 0 ‘#xx  0.001 ‘#x 0.01 ‘% 0.05

Residual standard error: 10.13 on 26 degrees of freedom
Multiple R-squared: 0.6519,Adjusted R-squared: 0.6117
F-statistic: 16.23 on 3 and 26 DF, p-value: 3.797e-06

Comparing with the result in Example 1, the standard errors for the
coefficient estimators are very large here.

The problem of multicollinearity (34 M B&). In a multiple regression
model, if an explanatory variable can be approximated well using lin-
ear combination of other explanatory variable(s), then the explanatory
variable is nearly redundant and should be removed from the model.
Otherwise, the regression coefficients cannot be well-estimated.

In Example 2, the variable x.extra can be explained well by H2S and
Lactic. The output for running

summary (1m(x.extra~H2S+Lactic))

shows that the multiple R? is almost 1, which indicates a strong collinear-
ity. The standard errors for the estimated regression coefficients in

summary (1m(taste H2S+Lactic+x.extra))

are large. However, when x.extra is removed, the standard errors for
the estimated regression coefficients in

summary (1m(taste H2S+Lactic))

are smaller.

A simulated example of multicollinearity. i&fE#]F# R output £ 18k
T, BAEZERTUE XTG4S

Example 3. Generate data:



set.seed (1)
x1 <= rnorm(1000)
x2 <- rnorm(1000)
x3 <- x1 + x2 + rnorm(1000)/50
y <= 1 + x1 + 0.5*%x2+ rnorm(1000)

— Run summary(1lm(y~x1+x2+x3)). None of the 3 regression coefli-
cients are significant, but the global test is significant.

— Run
summary (1m(x3"x1+x2) ) ; summary (Im(x27x1+x3) ) ; summary (1m(x1~x2+x3) )

In each of the 3 models, the multiple R? is greater than 90%, which
implies strong collinearity.

— Run
summary (1m(y~x1+x2)) ; summary (Im(y~x1+x3)) ; summary (Im(y~x2+x3))

For each of the above three models, the coefficients of the explana-
tory variables are all significant (p-value < 0.05), so the problem of
collinearity can be solved by removing an explanatory variable from
1m(y~x1+x2+x3). To choose one from the above models for the pre-
diction of y, we can choose the model 1m(y~x1+x3), which gives the
largest multiple R? and does not have a collinearity problem.

e Stepwise regression.

— Forward selection: add the most useful explanatory variable one at
a time; start with 0 variable.

— Backward elimination: remove the least significant explanatory vari-
able one at a time; start with all variables.

e In the collinearity example, forward selection starts with

summary (1m(y~x1) ) ; summary (1m(y~x2) ) ; summary (lm(y~x3))

and backward elimination starts with

summary (1m(y~x1+x2+x3))



