
Multiple regression

• Multiple regression. Suppose that {Yi, Xi,1, . . . , Xi,k}ni=1 are n observa-
tions for (Y,X1, . . . , Xk) and

Yi = β0 + β1Xi,1 + · · ·+ βkXi,k + εi (1)

for i = 1, . . ., n.

• Matrix expression of (1). let Y be the n vector whose i-th element is Yi.
Let X be the n× k matrix whose (i, j)-th element is Xi,j and let ε be the
n vector whose i-th element is εi. Then (1) can be expressed as

Y = (1 X)β + ε,

where 1 is a n×1 vector of 1’s, and β is the (k+1)×1 vector (β0, β1, · · · , βk)
T .

• Assumptions.

A1. εi’s are IID N(0, σ2
ε).

A2. ε and X are independent.

A3. (1 X) is of rank k + 1.

Note: Assumption A3 ensures that we can estimate β = (β0, β1, . . .,
βk)

T .

• Least square estimation. Let X∗ be the n× (k+1) matrix (1 X) and for
γ = (γ0, γ1, . . . , γk)

T , let

S(γ) = (Y−X∗γ)T (Y−X∗γ) =

n∑
i=1

(Yi − γ0 − γ1X1,i − · · · − γkXk,i)
2.

Then S(γ) is minimized when γ = β̂, where β̂ can be found using the
equation

(X∗)T (Y−X∗β̂) = 0,

or
β̂ = ((X∗)TX∗)−1(X∗)TY. (2)

β̂ is called the least square estimator of β. Let

(β̂0, β̂1, . . . , β̂k)
T = β̂,

Then β̂j is the least square estimator of βj for j = 0, . . ., k, and

Ŷ = β̂0 + β̂1X1 + · · ·+ β̂kXk

is called the estimated regression equation.
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• The distribution of β̂ = (β̂0, . . ., β̂k)
T is the multivariate normal distri-

bution
N

(
β, σ2

ε((X
∗)TX∗)−1

)
,

where β = (β0, . . ., βk)
T = (E(β̂0), . . ., E(β̂k))

T and σ2
ε((X

∗)TX∗)−1 is

the covariance matrix of β̂.

• The distribution for aT β̂ = a0β̂0 + . . . + akβ̂k. Suppose that a0, . . ., ak
are known constants. Let a be the (k + 1)× 1 vector (a0, . . ., ak)

T and

V = aT ((X∗)TX∗)−1a, (3)

then V ar(aT β̂) = σ2
εV and

a0β̂0 + . . .+ akβ̂k − (a0β0 + . . .+ akβk)√
σ2
εV

∼ N(0, 1).

• The residual sum of squares and the estimation of σ2
ε . The residual sum

of squares, denoted by RSS (or SSE), is defined as

RSS =

n∑
i=1

(Yi − β̂0 − β̂1X1,i − · · · − β̂kXk,i)
2.

It can be shown that

RSS

σ2
ε

∼ χ2(n− k − 1),

so we use

σ̂ε =

√
RSS

n− k − 1

to estimate σε.

• Constructing confidence interval for a0β0 + . . . + akβk. Let V be the
variable in (3) and let σ̂ε =

√
RSS/(n− k − 1). Then σ̂ε and β̂ are

independent and we have

a0β̂0 + . . .+ akβ̂k − (a0β0 + . . .+ akβk)√
σ̂2
εV

∼ t(n− k − 1).

Thus a (1− α) C.I. for a0β0 + . . .+ akβk is given by

a0β̂0 + . . .+ akβ̂k ± tα/2,n−k−1

√
σ̂2
εV .
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• Hypothesis testing. Suppose that a0, . . ., ak are constants. Consider the
testing problem

H0 : a0β0 + . . .+ akβk = 0 versus H1 : a0β0 + . . .+ akβk ̸= 0.

Let

T =
a0β̂0 + . . .+ akβ̂k√

σ̂2
εV

,

where V is given in (3). Then the test that rejects H0 when |T | >
tα/2,n−k−1 is of level α. In particular, we can test H0 : βj = 0 by taking
ai = 0 for i ̸= j and aj = 1.

• The multiple R2 (coefficient of multiple determination). The multiple R2

is defined as

R2 = 1− RSS∑n
i=1(Yi − Ȳ )2

= 1− RSS

SStotal
=

SSreg

SStotal
,

where

– SStotal =
∑n

i=1(Yi − Ȳ )2 is called the total sum of squares, and

– SSreg = SStotal −RSS is called the regression sum of squares.

It can be shown that RSS ≤ SStotal, so 0 ≤ R2 ≤ 1.

• Interpretation of R2. R2 is interpreted as the proportion of the varia-
tion of Y that is explained by X1, . . ., Xk. To see this, suppose that
in (1), (X1,i, . . . , Xk,i, Yi): i = 1, . . ., n are IID observations from the
distribution of (X1, . . . , Xk, Y ). By Assumptions A1-A2, we have

V ar(Y ) = V ar(β0 + β1X1 + · · ·+ βkXk) + σ2
ε .

The proportion of variation in Y explained by X1, . . ., Xk is

V ar(β0 + β1X1 + · · ·+ βkXk)

V ar(Y )
= 1− σ2

ε

V ar(Y )
≈ 1− RSS

SStotal
= R2

when n is large.

Therefore, we use R2 to represent the proportion of variation in Y that
can be explained by X1, . . ., Xk.

• Adjusted R2. The adjusted R2, denoted by R2
adj , is the quantity

1− RSS/(n− k − 1)

SStotal/(n− 1)
.

R2
adj is used because it better approximates the quantity 1− σ2

ε/V ar(Y )

than R2 when n− k − 1 is large but k is not small comparing to n.
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• R2
adj 不一定 ≥ 0, 所以我們通常用R2代表Y的變動中可由X1, . . ., Xk 解

釋的比例. 然而當n− k− 1 大而且k/n沒有很小時, 我們會看 R2
adj 來了解

模型的解釋度.

• The global test. The global test is for testing

H0 : β1 = · · · = βk = 0 versus H1 : β1, . . ., βk are not all zero

based on the test statistic

F =
SSreg/k

RSS/(n− k − 1)
=

(n− k − 1)R2

k(1−R2)
.

F ∼ F (k, n − k − 1) under H0. The global test rejects H0 at level a if
F > fa,k,n−k−1.

• Example 1. Consider the data set

https://stat.walkup.tw/teaching/statistics/data/cheese.txt

that is originally in “Introduction to the Practice of Statistics” by Moore
and McCabe (1989). The data set contains observations for each of the
four variables: taste, Acetic, H2S and Lactic. The observations for Acetic,
H2S and Lactic are concentration levels of acetic acid (醋酸), hydrogen
sulfide (硫化氫) and lactic aid (乳酸) in the samples of cheddar cheese,
and the observations for the variable taste are taste scores for the samples.
Suppose that the data file is downloaded to a file named cheese.txt in
the directory D:\temp, and we run

data1 <- read.table("D:\\temp\\cheese.txt", header = TRUE, row.names=1)

taste <- data1[,1]

Acetic <- data1[,2]

H2S <- dat1a[,3]

Lactic <- data1[,4]

so that the observations for taste, Acetic, H2S and Lactic are read into R
vectors taste, Acetic, H2S and Lactic respectively. After running the
command

summary(lm(taste~H2S+Lactic))

we have the following R output:
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Call:

lm(formula = taste ~ H2S + Lactic)

Residuals:

Min 1Q Median 3Q Max

-17.343 -6.530 -1.164 4.844 25.618

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -27.592 8.982 -3.072 0.00481 **

H2S 3.946 1.136 3.475 0.00174 **

Lactic 19.887 7.959 2.499 0.01885 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.942 on 27 degrees of freedom

Multiple R-squared: 0.6517, Adjusted R-squared: 0.6259

F-statistic: 25.26 on 2 and 27 DF, p-value: 6.551e-07

(a) Write down the estimated regression equation based on the
above regression analysis.

(b) What is the proportion of the variation in taste that can be
explained by H2S and Lactic?

(c) Can we conclude that the coefficients for H2S and Lactic are
not all zero at level 0.05?

(d) Can we conclude that the coefficient for Lactic is not zero at
level 0.01?

(e) Give an observed 95% confidence interval for the coefficient of
H2S.

(f) Let n be the number of samples of cheddar cheese. What is n?

(g) Find the residual sum of squares.

(h) Find the regression sum of squares.

(i) Find the total sum of squares.

Solutions.

(a) The estimated regression equation is

̂taste = −27.592 + 3.946×H2S + 19.887× Lactic.

(b) 65.17%.

(c) Yes; the p-value is 6.551× 10−7 < 0.05.
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(d) No; the p-value is 0.01885 > 0.01.

(e) An observed 95% confidence interval for the coefficient of H2S
is

[3.946− t0.025,27 × 1.136, 3.946 + t0.025,27 × 1.136].

From the table “Quantiles for t distributions”, t0.025,27 = 2.052,
so the observed 95% confidence interval for the coefficient of
H2S is

[3.946−2.052×1.136, 3.946+2.052×1.136] = [1.614928, 6.277072].

(f) n− 1 = 2 + 27, so n = 30.

(g)
√

RSS/(n− k − 1) =
√

RSS/27 = 9.942, so the residual sum
of squares is RSS = 27× (9.942)2 = 2668.771.

(h) (SSreg/k)/(RSS/(n− k − 1)) = (SSreg/2)/(RSS/27) = 25.26
and RSS/27 = (9.942)2, so regression sum of squares is SSreg =
25.26× (9.9422)× 2 = 4993.567.

(i) The total sum of squares is SStotal = SSreg+RSS = 2668.771+
4993.567 = 7662.338.

• In Example 1, the estimated regression coefficients can be computed using
the formula in (2):

length(H2S)

Xstar <- cbind(rep(1, 30), H2S, Lactic)

#Xstar has three columns: a column of ones, H2S, Lactic

tXstar <- t(Xstar)

#tXstar is the transpose matrix of Xstar

tXX.inverse <- solve(tXstar%*%Xstar)

#tXX.inverse is the inverse matrix of the product of tXstar and Xstar

beta.hat <- tXX.inverse %*% tXstar %*% taste

#beta.hat is the vector of estimated regression coefficients

beta.hat

In addition, the estimated standard deviations of the intercept, the co-
efficient of H2S, and the coefficient of Lactic can be computed using (3)
and σ̂ε:

residual <- taste - (beta.hat[1]+beta.hat[2]*H2S+beta.hat[3]*Lactic)
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RSS <- sum(residual^2)

sigma.hat <- sqrt(RSS/27) #n=30, k=2, n-k-1=27

sigma.hat #9.942

a <- c(1,0,0)

V <- (a %*% tXX.inverse %*% a)[1,1]

sqrt(V)*sigma.hat #8.982, estimated standard deviation of the intercept

a <- c(0,1,0)

V <- (a %*% tXX.inverse %*% a)[1,1]

sqrt(V)*sigma.hat #1.136, estimated standard deviation of the coefficient of H2S

a <- c(0,0,1)

V <- (a %*% tXX.inverse %*% a)[1,1]

sqrt(V)*sigma.hat #7.959, estimated standard deviation of the coefficient of Lactic

• Adding a redundant explanatory variable may increase the standard er-
rors of regression coefficient estimates.

Example 2. For the data in Example 1, create a redundant explanatory
variable x.extra by running the commands:

n <- length(taste)

set.seed(1)

x.extra <- H2S+Lactic+rnorm(n,sd=0.01)

Then, obtain the result of fitting a multiple regression model by running
the command

summary(lm(taste~H2S+Lactic+x.extra))

The output is

Call:

lm(formula = taste ~ H2S + Lactic + x.extra)

Residuals:

Min 1Q Median 3Q Max

-17.2283 -6.5576 -0.9878 4.9823 25.8567
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -27.769 9.287 -2.990 0.00603 **

H2S 27.219 208.090 0.131 0.89694

Lactic 43.365 210.073 0.206 0.83807

x.extra -23.286 208.206 -0.112 0.91181

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6519,Adjusted R-squared: 0.6117

F-statistic: 16.23 on 3 and 26 DF, p-value: 3.797e-06

Comparing with the result in Example 1, the standard errors for the
coefficient estimators are very large here.

• The problem of multicollinearity (共線性問題). In a multiple regression
model, if an explanatory variable can be approximated well using lin-
ear combination of other explanatory variable(s), then the explanatory
variable is nearly redundant and should be removed from the model.
Otherwise, the regression coefficients cannot be well-estimated.

• In Example 2, the variable x.extra can be explained well by H2S and
Lactic. The output for running

summary(lm(x.extra~H2S+Lactic))

shows that the multiple R2 is almost 1, which indicates a strong collinear-
ity. The standard errors for the estimated regression coefficients in

summary(lm(taste~H2S+Lactic+x.extra))

are large. However, when x.extra is removed, the standard errors for
the estimated regression coefficients in

summary(lm(taste~H2S+Lactic))

are smaller.

• A simulated example of multicollinearity. 這個例子的 R output 就不貼
了, 想看結果可以自己去執行相關指令.

Example 3. Generate data:
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set.seed(1)

x1 <- rnorm(1000)

x2 <- rnorm(1000)

x3 <- x1 + x2 + rnorm(1000)/50

y <- 1 + x1 + 0.5*x2+ rnorm(1000)

– Run summary(lm(y~x1+x2+x3)). None of the 3 regression coeffi-
cients are significant, but the global test is significant.

– Run

summary(lm(x3~x1+x2));summary(lm(x2~x1+x3));summary(lm(x1~x2+x3))

In each of the 3 models, the multiple R2 is greater than 90%, which
implies strong collinearity.

– Run

summary(lm(y~x1+x2));summary(lm(y~x1+x3));summary(lm(y~x2+x3))

For each of the above three models, the coefficients of the explana-
tory variables are all significant (p-value < 0.05), so the problem of
collinearity can be solved by removing an explanatory variable from
lm(y~x1+x2+x3). To choose one from the above models for the pre-
diction of y, we can choose the model lm(y~x1+x3), which gives the
largest multiple R2 and does not have a collinearity problem.

• Stepwise regression.

– Forward selection: add the most useful explanatory variable one at
a time; start with 0 variable.

– Backward elimination: remove the least significant explanatory vari-
able one at a time; start with all variables.

• In the collinearity example, forward selection starts with

summary(lm(y~x1));summary(lm(y~x2));summary(lm(y~x3))

and backward elimination starts with

summary(lm(y~x1+x2+x3))
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