Estimation and testing for Corr(X, Y)

• For each of the following two plots, observations for two variables X and Y are plotted.

The data are generated according to the following two models respectively:

Model 1:
$$Y = 1 + 2X + Z$$
,
Model 2: $Y = 1 + 2X + 0.5Z$.

where X and Z are independent N(0,1) random variables. The plot in the right panel is for the data generated from Model 2, which shows a stronger linear relation between X and Y.

- Suppose that for two variables X and Y, we have n pairs of observations for (X, Y): $(X_1, Y_1), \ldots, (X_n, Y_n)$. The strength of linear relation between two variables X and Y based on their observations is often reflected by the sample correlation.
- The sample correlation (or the sample correlation coefficient) between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) is

$$\frac{\text{the sample covariance between } (X_1, \dots, X_n) \text{ and } (Y_1, \dots, Y_n)}{S_X S_Y}, \quad (1)$$

where S_X and S_Y are the sample standard deviations for (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) respectively, and the sample covariance between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) is defined as

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$$

Here \overline{X} and \overline{Y} are the sample means for (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) respectively. It is common to use r to denote the sample correlation.

• Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are IID pairs of observations and $(X_i, Y_i) \sim (X, Y)$. Then for large n,

the sample covariance between
$$(X_1, \dots, X_n)$$
 and (Y_1, \dots, Y_n)
 $\approx E(X - \mu_X)(Y - \mu_Y),$ (2)

where $\mu_X = E(X)$ and $\mu_Y = E(Y)$.

- The expectation $E(X-\mu_X)(Y-\mu_Y)$ is called the covariance between X and Y, which is denoted by Cov(X, Y).
- From (2), for large n, the sample correlation between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) is close to

$$\frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}},$$

since $S_X \approx \sqrt{Var(X)}$ and $S_Y \approx \sqrt{Var(Y)}$.

• The quantity

$$\frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

is called the correlation between X and Y and is denoted by Corr(X, Y).

- Corr(X, Y) is a measurement of the strength of linear relation between X and Y. Below are some properties of the correlation.
 - $|Corr(X,Y)| \le 1.$
 - -|Corr(X,Y)| = 1 means X = a + bY (or Y = a + bX) for some constants a, b.
 - If X and Y are independent, then Corr(X, Y) = 0.
 - -Corr(aX+b, cY+d) = Corr(X, Y) for constants a, b, c, d if ac > 0.

For details and other properties of Cov(X, Y) and Corr(X, Y), see the handout "Covariance and correlation".

- Suppose that we have IID observations $(X_1, Y_1), \ldots, (X_n, Y_n)$ such that $(X_i, Y_i) \sim (X, Y)$, then Corr(X, Y) can be well approximated by r: the sample correlation between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) if n is large.
 - $|r| \leq 1.$
 - |r| = 1 means $X_i = a + bY_i$ (or $Y_i = a + bX_i$) for i = 1, ..., n for some constants a, b.

- The sample correlation coefficient between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) is the same as the sample correlation coefficient between $(aX_1 + b, \ldots, aX_n + b)$ and $(cY_1 + d, \ldots, cY_n + d)$ for constants a, b, c, d if ac > 0.
- When computing the sample correlation, the formula

$$\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \left(\sum_{i=1}^{n} X_i Y_i\right) - n\bar{X}\bar{Y}$$

is often used for computing the sample covariance.

• Example 1. 下表為101/04/19 - 101/04/24 期間, 中華電和台灣大的 每日股票收盤價. 計算這段期間中華電收盤價和台灣大收盤價的sample correlation coefficient.

	中華電收盤價	台灣大收盤價
101/04/19	88.3	91.1
101/04/20	87.6	90.5
101/04/23	88.3	91.6
101/04/24	89.7	93

Sol. 考慮將中華電收盤價-87, 台灣大收盤價-90, 以轉換後的資料計算 sample covariance and sample correlation coefficient. 轉換後的中華電收 盤價為 1.3, 0.6, 1.3, 2.7, sample mean $\beta(1.3+0.6+1.3+2.7)/4 = 5.9/4$, sample variance β

$$\frac{1}{4-1} \left(1.3^2 + 0.6^2 + 1.3^2 + 2.7^2 - 4(5.9/4)^2 \right) = 9.31/12$$

轉換後的台灣大收盤價為 1.1, 0.5, 1.6, 3, sample mean 為(1.1 + 0.5 + 1.6 + 3)/4 = 6.2/4, sample variance 為

$$\frac{1}{4-1} \left(1.1^2 + 0.5^2 + 1.6^2 + 3.0^2 - 4(6.2/4)^2 \right) = 13.64/12.$$

轉換後的中華電收盤價和轉換後的台灣大收盤價之sample covariance 為

$$\begin{aligned} & \frac{1}{4-1} \left(1.3 \times 1.1 + 0.6 \times 0.5 + 1.3 \times 1.6 + 2.7 \times 3 - 4(5.9/4)(6.2/4) \right) \\ & = \frac{1}{3} \left(\frac{11.06}{4} \right), \end{aligned}$$

而sample correlation coefficient 為

$$\frac{(11.06/4)/3}{\sqrt{(9.31/12)(13.64/12)}} = 0.9814611$$

 R commands. 假設兩組樣本(X₁,...,X_n)及(Y₁,...,Y_n)已分別儲存於R中 的兩向量變數x及 y.

R 指令	用途
var(x)	計算 x 的 sample variance
cov(x,y)	計算 x 和 y 的 sample covariance
length(x)	計算 x 的長度, 即n.

執行以下R指令可用原始資料計算Example 1 中的sample correlation co-efficient.

x=c(88.3, 87.6, 88.3, 89.7)
y=c(91.1, 90.5, 91.6, 93)
cov(x,y)/sqrt(var(x)*var(y))

- Problem set-up. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ form a random sample of *n* pairs and $(X_i, Y_i) \sim (X, Y)$. Let $\rho = Corr(X, Y)$. We would like to
 - estimate ρ and

- test

$$H_0: \rho = 0$$
 versus $H_1: \rho \neq 0$

based on $(X_1, Y_1), \ldots, (X_n, Y_n)$. Since for large n, ρ can be approximated by r: the sample correlation between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) , the test will be based on r.

• Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are IID pairs of observations and $(X_i, Y_i) \sim (X, Y)$. Let $\rho = Corr(X, Y)$. Suppose that the distribution for (X, Y) is bivariate normal, then under H_0 : $\rho = 0$,

$$\sqrt{n-2}\left(\frac{r}{\sqrt{1-r^2}}\right) \sim t(n-2)$$

for $n \geq 3$. Let

$$T = \sqrt{n-2} \left(\frac{r}{\sqrt{1-r^2}} \right),\tag{3}$$

then for testing $H_0: \rho = 0$ versus $H_1: \rho \neq 0$, one can reject H_0 at level a if

 $|T| > t_{a/2,n-2}.$

• Note. When the distribution for (X, Y) is bivariate normal, Corr(X, Y) = 0 implies that X and Y are independent.

• Example 2. Suppose that n = 12 and $(X_1, Y_1), \ldots, (X_n, Y_n)$ form a random sample of n pairs and the (observed) sample correlation coefficient is 0.32. Let $\rho = Corr(X_1, Y_1)$. Can we conclude that $\rho \neq 0$ at the 0.05 significant level?

Sol. $t_{0.05/2,12-2} = t_{0.025,10} = 2.228$ and the observed T statistic

$$T = \sqrt{10} \left(\frac{0.32}{\sqrt{1 - (0.32)^2}} \right) = 1.068092$$

Since the observed |T| < 2.228, we can not conclude that $\rho \neq 0$ at the 0.05 significant level.

• Example 3. Suppose that two samples (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) are stored in two vectors **x** and **y** in R respectively. Suppose that we have the following R outputs:

> var(x)
[1] 0.7758333
> var(y)
[1] 1.136667
> cov(x,y)
[1] 0.9216667
> length(x)
[1] 4

Find the sample correlation coefficient between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) . Can we conclude that $Corr(X_1, Y_1) \neq 0$ at level 0.05?

Sol. The sample correlation coefficient between (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) is $0.9216667/\sqrt{(0.7758333 \times 1.136667)} = 0.981461$. The observed T statistic for testing $H_0: Corr(X_1, Y_1) = 0$ is

$$\sqrt{4-2} \left(\frac{0.981461}{\sqrt{1-(0.981461)^2}} \right) = 7.241893.$$

Since $t_{0.05/2,4-2} = t_{0.025,2} = 4.303 < |7.241893|$, we can conclude that $Corr(X_1, Y_1) \neq 0$ at level 0.05 (assuming $(X_1, Y_1), \ldots, (X_n, Y_n)$ are IID bivariate normal).

• One-side tests. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are IID pairs of observations and $(X_i, Y_i) \sim (X, Y)$. Let $\rho = Corr(X, Y)$. Suppose that the distribution for (X, Y) is bivariate normal and T is still defined according to (3).

- For testing $H_0: \rho \leq 0$ versus $H_1: \rho > 0$, we reject H_0 at level a if $T > t_{a,n-2}$.
- For testing $H_0: \rho \ge 0$ versus $H_1: \rho < 0$, we reject H_0 at level a if $T < -t_{a,n-2}$.
- Example 4. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ form a random sample of *n* pairs and the sample correlation coefficient is 0.32. Let ρ be the correlation between X_1 and Y_1 .
 - (a) Suppose that n = 12. Can we conclude that $\rho > 0$ at the 0.05 significant level?
 - (b) Suppose that n = 212. Can we conclude that $\rho > 0$ at the 0.05 significant level?

Sol.

- (a) No, the observed $T = \sqrt{12 2}(0.32)/\sqrt{1 (0.32)^2} = 1.068092 < t_{0.05,10} = 1.812.$
- (b) Yes, the observed $T = \sqrt{212 2}(0.32)/\sqrt{1 (0.32)^2} = 4.894611 > t_{0.05,200} = 1.653.$