One-way Analysis of Variance (One-way ANOVA, 單因子變異數分析)

- ANOVA is used to determine whether the means for different populations are the same. When the different populations represent responses corresponding to different levels of a treatment, ANOVA can be used to determine whether the different treatment levels have the same effect on the mean of the response.
 - Example.
 - * Treatment levels: receiving different medicines.
 - * Response: blood pressure.
- Notation and assumptions for data.
 - -k: total number of treatment levels.
 - n_i : number of observations for the response for treatment level *i*.
 - $-n = \sum_{i=1}^k n_i.$
 - $X_{i,j}$: the *j*-th observation for the response under treatment level *i*.
 - It is assumed that all $X_{i,j}$'s are independent and for each i,

$$X_{i,1},\ldots,X_{i,n_i}$$
 are IID $N(\mu_i,\sigma^2)$.

• The problem of interest is to test

 $H_0: \mu_1 = \cdots = \mu_k$ versus $H_1:$ not all the μ_i 's are the same. (1)

• Some relevant statistics for testing (1).

- The grand mean (overall sample mean) is
$$\bar{X}_G = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} X_{i,j}$$
.

- For the treatment level *i* group, the sample mean and sample standard deviation are $\bar{X}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{i,j}$ and $S_i = \sqrt{\frac{\sum_{j=1}^{n_i} (X_{i,j} - \bar{X}_i)^2}{n_i - 1}}$ respectively.

- The sum of squares due to treatment is $SS_{treat} = \sum_{i=1}^{k} n_i (\bar{X}_i \bar{X}_G)^2$.
- The sum of squares due to error is $SSE = \sum_{i=1}^{k} (n_i 1)S_i^2$.
- Note. In this class, we use SS_{treat} or SST to denote the sum of squares due to treatment. In some other places, SST may denote the toal sum of squares. The toal sum of squares, denoted by SS_{total} , is

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{i,j} - \bar{X}_G)^2.$$

It can be shown that

$$SS_{total} = SS_{treat} + SSE$$

• The ANOVA F test uses the following statistic for testing (1):

$$F = \frac{\text{SS}_{\text{treat}}/(k-1)}{\text{SSE}/(n-k)} = \frac{\sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X}_G)^2 / (k-1)}{\sum_{i=1}^{k} (n_i - 1) S_i^2 / (n-k)}.$$

- $F \sim F(k-1, n-k)$ under H_0 since under H_0 , $SS_{treat}/\sigma^2 \sim \chi^2(k-1)$ and $SSE/\sigma^2 \sim \chi^2(n-k)$ and SS_{treat} and SSE are independent.
- The ANOVA F test rejects H_0 at level a if $F > f_{a,k-1,n-k}$.
- *p*-value for the ANOVA *F* test: P(F(k-1, n-k) > observed value for F).
- R command for computing the *p*-value: 1-pf(obs.F, k-1, n-k), where obs.F denotes the observed value for F.

Example 1. Suppose that we want to compare the effects of three weight loss drugs A, B and C. 12 participants are assigned to receive one of the three medicines. Their weight losses (in kilograms) are given below.

A	В	С
5.5	6.6	5.1
5.4	7.5	4.6
5.6	6.7	5.5
	7.1	4.8
	5.8	

Are the three drugs equally effective? Use the 0.01 significance level.

- Solution to Example 1 using R.

 Solution to Example 1 by direct computation. The sample means and sample standard deviations for each drug group can be computed directly. The results are:

	Α	В	С
sample mean	5.5	6.74	5
sample standard deviation	0.1	$\sqrt{0.403}$	$\sqrt{0.46/3}$

The grand mean can be computed from the sample means:

$$\bar{X}_G = \frac{1}{n} \sum_{i=1}^k n_i \bar{X}_i = \frac{3 \times 5.5 + 5 \times 6.74 + 4 \times 5}{12} = 5.85.$$

From the above calculation,

$$SS_{treat} = \sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X}_G)^2$$

= 3 × (5.5 - 5.85)² + 5 × (6.74 - 5.85)² + 4 × (5 - 5.85)² = 7.218

and

SSE =
$$\sum_{i=1}^{k} (n_i - 1)S_i^2$$

= $2 \times (0.1)^2 + 4 \times (\sqrt{0.403})^2 + 3 \times (\sqrt{0.46/3})^2 = 2.092,$

so the F statistic is

$$\frac{\text{SS}_{\text{treat}}/(k-1)}{\text{SSE}/(n-k)} = \frac{7.218/(3-1)}{2.092/(12-3)} = 15.52629.$$

From the table "0.99 quantiles for F distributions", $f_{0.01,2,9} = 8.02 < 15.52629$, so we conclude that the effects of the three drugs are not all the same at the 0.01 significance level.

Example 2. 假設農夫收集了使用數種不同肥料組合下,某種作物產量的 資料. 假設使用 R 分析資料,而作物產量和肥料組合資料已分別儲存於 R 中兩變數 yield 和 fertilizer,其中fertilizer為 factor 型態的變數. 假設執行 R 指令 anova($lm(yield^fertilizer)$)的結果為

Analysis of Variance Table

相同?

Response: yield Df Sum Sq Mean Sq F value Pr(>F) fertilizer 2 107.50 53.749 15.213 1.627e-05 *** Residuals 36 127.19 3.533 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 (a) 在0.001的顯著水準下,是否可推論不同肥料組合對產量的影響不全

- (b) 資料中的肥料組合方式有幾種?
- (c) 共有幾筆資料?

解: (a) 是, *p*-value = $1.627 \times 10^{-5} < 0.001$. (b) 資料中的肥料組合方式 有3 種 $(k-1=2 \Rightarrow k=3)$. (c) 資料總共有39筆 $(n-k=n-3=36 \Rightarrow n=39)$.

- k = 2 時, one-way ANOVA F test 和 pooled t test 的檢定結果是一致的.
- An experiment for checking the distribution of SS_{treat}/σ^2 under H_0 . Experiment setup:

$$-k = 3, n_1 = 100, n_2 = 200, n_3 = 300.$$

- $X_{i,j} \sim N(0,1)$ for $j = 1, ..., n_i, i = 1, 2, 3.$

Experiment steps:

- (i) In each trial, generate $X_{i,j}$ s and compute $SS_{treat}/\sigma^2 = SS_{treat}$. Run 10^4 trials to obtain 10^4 SS_{treat} values.
- (ii) Plot the histogram (normalized) of the $10^4 \text{ SS}_{\text{treat}}$ values.
- (iii) Add the graph of the PDF of $\chi^2(2)$ to the histogram plot.

The result agrees with the fact that the distribution of SS_{treat}/σ^2 under $H_0: \mu_1 = \mu_2 = \mu_3$ is $\chi^2(2)$. R commands

```
n1 <- 100
n2 <- 200
n3 <- 300
m <- 10^4
sst <- rep(0, m)</pre>
for (i in 1:m){
  x1 <- rnorm(n1, mean=0, sd=1)</pre>
  x2 <- rnorm(n2, mean=0, sd=1)
  x3 <- rnorm(n3, mean=0, sd=1)
  x <- c(x1, x2, x3)
  xbar <- mean(x)</pre>
  sst[i] <- n1*(mean(x1)-xbar)^2 + n2*(mean(x2)-xbar)^2 + n3*(mean(x3)-xbar)^2</pre>
}
hist(sst, nclass="scott", freq=FALSE)
f.fun <- function(x){</pre>
                   #The PDF of chi-squared distribution of 2 degrees of freedom
   dchisq(x, 2)
  }
```

curve(f.fun, add=TRUE)

• Fact 1 Suppose that Z_1, \ldots, Z_k are IID N(0, 1) random variables, U_1, \ldots, U_m are linear combinations of Z_1, \ldots, Z_k such that $Cov(U_i, U_j) = 0$ for $i \neq j$ and $Var(U_i) = 1$ for all i, where m < k. Then,

$$Z_1^2 + \dots + Z_k^2 - (U_1^2 + \dots + U_m^2) \sim \chi^2(k-m).$$

Moreover, $Z_1^2 + \cdots + Z_k^2 - (U_1^2 + \cdots + U_m^2)$ and (U_1, \ldots, U_m) are independent.

-Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y).