Chi-squared distributions and testing for population variance.

- Suppose that $Z_1, ..., Z_m$ are IID N(0,1). Then the distribution of $Z_1^2 + \cdots + Z_m^2$ is called the chi-squared distribution (χ^2 distribution, $\dagger \hat{\sigma} \hat{\sigma} \mathbb{R}$) with m degrees of freedom, denoted by $\chi^2(m)$.
- Relavent R commands
 - dchisq(x, m): the PDF for $\chi^2(m)$ evaluated at x.
 - pchisq(x, m): the CDF for $\chi^2(m)$ evaluated at x.
 - qchisq(q, m): the q quantile for $\chi^2(m)$.
 - rchisq(n, m): generating n IID random variables from $\chi^2(m)$.
- Example 1. Find the mean and the median of $\chi^2(10)$. Sol. Let Z_1, \ldots, Z_{10} be IID N(0,1) random variables. Then the mean of

 $\chi^2(10)$ is $E(Z_1^2 + \cdots + Z_{10}^2) = 10E(Z_1^2) = 10$. The median of $\chi^2(10)$ is

```
qchisq(0.5, 10) #9.341818
```

Note that the mean > the median, so the $\chi^2(10)$ distribution is positively skewed (or right skewed).

- Definition 1. A distribution is positively skewed (or right skewed) if its mean is greater than its median.
- Definition 2. A distribution is negatively skewed (or left skewed) if its mean is less than its median.
- Example 2. Generate 10000 independent random sums, where each sum is of the form $Z_1^2 + \cdots + Z_9^2$, and Z_1, \ldots, Z_9 are IID N(0,1) random variables. Plot the normalized histogram and add the $\chi^2(9)$ PDF.

```
n.tr <- 10^5
ans <- rep(0, n.tr)
for (i in 1:n.tr){
   z <- rnorm(9)
   ans[i] <- sum(z^2)
}
hist(ans, nclass="scott", freq=FALSE)

dchisq9 <- function(x){ dchisq(x, df=9)}
curve(dchisq9, 0, 40, add=TRUE, col="red")</pre>
```

• Suppose that (X_1, \dots, X_n) is a random sample from $N(\mu, \sigma^2)$. Let

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

be the sample standard deviation. Then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

• Example 3. Generate 10000 random numbers from the distribution of $9S^2/4$, where S is the sample standard deviation of a random sample of size 10 from N(0,4). Plot the normalized histogram for the 10000 generated values and add the $\chi^2(9)$ PDF.

```
x <- 1:10000
for (i in 1:10000){
    S <- sd(rnorm(10, sd=2))
    x[i] <- 9*S^2/4
}
hist(x, nclass="scott", freq=FALSE)

f <- function(x){ dchisq(x, 9) }
curve(f,add=TRUE, col="red")</pre>
```

• Suppose that (X_1, \dots, X_n) is a random sample from $N(\mu, \sigma^2)$. Let S be the sample standard deviation. Consider the testing problem

$$H_0: \sigma \leq \sigma_0 \text{ v.s. } H_1: \sigma > \sigma_0.$$

Consider the test that rejects H_0 at level a whenever

$$\frac{(n-1)S^2}{\sigma_0^2} > k_{a,n-1},$$

where $k_{a,n-1}$ is the (1-a) quantile for $\chi^2(n-1)$. Then the test is of size a. The p-value for the test is

$$P\left(\chi^2(n-1) > \text{ observed } \frac{(n-1)S^2}{\sigma_0^2}\right).$$

- Example 4. (modified from the desk production example in the text).
 - weekly desk production $\sim N(\mu, \sigma^2)$
 - data: the numbers of desks produced per week in last 30 weeks
 - sample standard deviation is 14.3.

Questions

- Can we conclude that $\sigma > 11$ at the 0.05 significance level?
- Can we conclude that $\sigma > 11$ at the 0.01 significance level?

Sol. Consider the testing problem

$$H_0: \sigma \leq 11 \text{ versus } H_1: \sigma > 11$$

and the test that rejects H_0 at level a whenever

$$\frac{(30-1)S^2}{11^2} > k_{a,30-1}.$$

The observed test statistic $(30-1)S^2/(11^2)$ is $29(14.3)^2/(11^2) = 49.01$, so the *p*-value is $P(\chi^2(29) > 49.01)$, which can be found using the R command

1-pchisq(49.01, 29)

The p-value is approximately 0.01152017, so we can conclude that $\sigma > 11$ at the 0.05 significance level but not at the 0.01 level.

We can also reach the same conclusion by finding $k_{0.05,29} = 42.557$ and $k_{0.01,29} = 49.588$ using the table "Quantiles for χ^2 distributions on the course web site.

• Let S be the sample standard deviation of a random sample of size n from $N(\mu, \sigma^2)$. Given $\alpha \in (0, 0.5)$, to construct a level α test for testing

$$H_0: \sigma = \sigma_0 \text{ v.s. } \sigma \neq \sigma_0,$$

choose $\theta \in (0,1)$ and consider the test that rejects $H_0: \sigma = \sigma_0$ if and only if

$$\sigma_0^2 \not\in \left[\frac{(n-1)S^2}{k_{\alpha\theta,n-1}}, \frac{(n-1)S^2}{k_{1-\alpha(1-\theta),n-1}}\right],$$

then the test is of size α . Moreover,

$$\left[\frac{(n-1)S^2}{k_{\alpha\theta,n-1}}, \frac{(n-1)S^2}{k_{1-\alpha(1-\theta),n-1}}\right]$$

is a $(1 - \alpha)$ confidence interval of σ^2 .

• Example 5. Let S be the sample standard deviation of a random sample of size 10 from $N(\mu, \sigma^2)$. Note that running the R command

1/qchisq(c(0.02, 0.04, 0.97, 0.99),df=9)

gives

[1] 0.39488565 0.32209537 0.05411377 0.04615528

and running the R command

1/qchisq(c(0.02, 0.04, 0.97, 0.99),df=10)

gives

[1] 0.32689872 0.27052314 0.05019599 0.04308627

- (a) Give a 95% C.I. for σ^2 .
- (b) Suppose that we observe S=10. Compute the observed 95% C.I. for σ^2 using the C.I. from Part (a).
- (c) Propose a level 0.05 test for testing

$$H_0: \sigma = 3 \text{ v.s. } H_1: \sigma \neq 3$$

based on S. Suppose that we observed S=10. Can we conclude that $\sigma \neq 3$ at level 0.05 based on the proposed test?

Sol.

(a) Note that for $\theta \in (0, 1)$,

$$\left[\frac{9S^2}{k_{0.05\theta,9}}, \frac{9S^2}{k_{1-0.05(1-\theta),9}}\right] \tag{1}$$

is a 95% C.I. for σ^2 . Take θ so that $0.05\theta=0.01,$ then $\theta=1/5,$ $0.05(1-\theta)=0.04,$

$$k_{0.05\theta,9} = k_{0.01,9} = 1/0.04615528,$$

and

$$k_{1-0.05(1-\theta),9} = k_{1-0.04,9} = 1/0.32209537$$

The 95% C.I. in (1) is

$$\left[0.04615528 \cdot 9S^2, 0.32209537 \cdot 9S^2\right] = \left[0.4153975S^2, 2.898858S^2\right]. \tag{2}$$

(b) Since the observed S is 10, the observed 95% C.I. for σ^2 in (2) is

$$\left. [0.4153975S^2, 2.898858S^2] \right|_{S=10} = [41.53975, 289.8858]$$

(c) Consider the test that rejects $H_0: \sigma = 3$ if and only if

$$3^2 \notin \left[\frac{9S^2}{k_{0.05\theta,9}}, \frac{9S^2}{k_{1-0.05(1-\theta),9}} \right] \Big|_{\theta=1/5},$$

then the test is of size 0.05 (and hence of level 0.05). From the calculation in Part (a),

$$\left[\frac{9S^2}{k_{0.05\theta,9}}, \frac{9S^2}{k_{1-0.05(1-\theta),9}}\right]\bigg|_{\theta=1/5} = [0.4153975S^2, 2.898858S^2],$$

so the test rejects $H_0: \sigma = 3$ if and only if

$$9 \notin [0.4153975S^2, 2.898858S^2].$$

When the observed S = 10, the interval

$$\left. [0.4153975S^2, 2.898858S^2] \right|_{S=10} = [41.53975, 289.8858],$$

which does not contain 9. Therefore, we can conclude that $\sigma \neq 3$ at level 0.05 based on the proposed test.