
Learning from a random sample (IID data)

• Suppose that (X1, . . . , Xn) is a random sample and the distribution of
Xi is D, then we say that (X1, . . . , Xn) is a random sample from D (or a
random sample with population distribution D).

• Suppose that (X1, . . . , Xn) is a random sample from D. Then we can
learn from the sample about

– quantities determined by D such as the mean and variance of D, or

– the PDF of D (if D has a PDF).

• Learning from sample mean and sample standard deviation. Suppose
that X1, . . ., Xn are IID. Suppose that E(X1) = µ and

√
V ar(X1) = σ

are both finite. Let

X̄ =

∑n
i=1Xi

n

and

S =

√∑n
i=1(Xi − X̄)2

n− 1
.

Then X̄ ≈ µ and S ≈ σ with large probability when n is large enough.

• Generate IID data using R from N(0, 4), U(−1, 2), and the exponential
distribution with mean 1/4:

data <- rnorm(100, mean=0, sd=2) #generate 100 IID data from N(0,4)

data <- runif(100, -1, 2) #generate 100 IID data from U(-1,2)

data <- rexp(100, rate=4)

#generate 100 IID data from the exponential distribution with mean 1/4

• Example 1. Generate 10000 IID data from U(0, 1) using R. Compute
the sample mean and sample standard deviation, and compare them with
the mean and standard deviation of U(0, 1).

Sol. The R commands are given below.

#generate 10000 data from U(0,1)

data <- runif(10000, 0, 1)

#compute the sample mean

mean(data)

#compute the sample standard deviation

sd(data)

The mean for U(0, 1) is 0.5, which is close to the sample mean. The
standard deviation for U(0,1) is

√
1/12 ≈ 0.2886751, which is close to

the sample standard deviation.
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• Example 2. Generate 10000 IID data from N(0, 9) using R. Compute
the sample mean and sample standard deviation, and compare them with
the mean and standard deviation of N(0, 9).

Sol. The R commands are given below.

#generate 10000 data from N(0,9)

data <- rnorm(10000, mean=0, sd=3)

#compute the sample mean

mean(data)

#compute the sample standard deviation

sd(data)

The mean and standardard deviation for N(0, 9) are 0 and 3 respectively,
which are close to the sample mean and the sample standard deviation
respectively.

• A normalized histogram is a historgram whose bin heights are divided by
a postive constant so that the areas of the bins sum up to one.

• Learning from a normalized histogram. Suppose that X1, . . ., Xn are IID
and X1 has PDF f . Then the normalized histogram based on X1, . . .,
Xn can approximate f well for large n.

• The R command for drawing a normalized histogram with break points
selected using Scott’s rule is hist(x, nclass="scott", freq=FALSE),
where x is the data vector.

• Example 3. Generate 10000 IID data from the exponential distribution
with mean 1/4 using R. Plot the normalized histogram and add the graph
of the PDF of the exponential distribution for comparison.

Sol. The R commands are given below.

#generate data

data <- rexp(10000, rate=4)

#draw the normalized histogram

hist(data, nclass="scott", freq=FALSE)

#add the graph of the exponential PDF

f <- function(x){ 4*exp(-4*x) }

curve(f,add=TRUE, col="red")

• Example 4. Suppose that n = 1000 and X1, . . ., Xn are IID U(0, 1).
Let µ = E(X1) = 0.5 and σ =

√
V ar(X1) =

√
1/12. Generate 10000
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IID data using R from the distribution of

√
n(X̄ − µ)

σ

and plot a normalized histogram of the data. Add the N(0, 1) PDF to
the plot.

Sol. The R commands are given below.

n <- 1000

mu <- 0.5

sigma <- sqrt(1/12)

data <- rep(0, 10000)

#generate 10000 IID data

for (i in 1:10000){

x <- runif(n,0,1)

data[i] <- sqrt(n)*(mean(x)-mu)/sigma

}

#plot the histogram

hist(data, nclass="scott", freq=FALSE)

#add the N(0,1) PDF

f <- function(x){ exp(-x^2/2)/sqrt(2*pi) }

curve(f, add=TRUE, col="red")

Note that the above result supports the central limit theorem (中央極限
定理)

• Central Limit Theorem. Suppose that X1, . . ., Xn are IID with E(Xi) =
µ and V ar(Xi) = σ2. Let X̄ = (X1 + · · ·+Xn)/n. Then the distribution
of √

n(X̄ − µ)

σ

is approximately N(0, 1).
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