Central limit theorem (P 4% R & 3%)

e Central limit theorem. Suppose that Xi, ..., X, are IID with E(X;) = u
and Var(X;) = 0. Let X = (X1 +--- 4 X,,)/n. Then the distribution

of YUX —p)

is approximately N(0,1) in the sense that

P (W < g;> ~ P(N(0,1) < z)

o
for every x for large n.
— Recall that from (6) and (7) in the handout “Mean, variance and
standard deviation”, we have
2

E(X)=pand Var(X) = %,

w0 ViX —p) X - B(X)

o -~ (Var(X))1/2

is a random variable with mean 0 and variance 1.

e Raw normal approximation to Bin(n,p). Suppose that X, ---, X,, are
IID Bin(1,p), then E(X;) =p and Var(X;) = p(l — p). Let
7 VX —p)
p(1—p)

then the distribution of Z is approximately N (0,1) for large n. Express
nX in terms of Z and we have nX = np+ y/np(1 —p)Z, so

P(Bin(n,p) <x) = P(np+ /np(l—p)Z < )
, (Z . wwp)
np(1 —p)

~ P (N(m) < w)

np(1l —p)
P(N(np,np(1 —p)) < x).

The formula
P(Bin(n,p) < x) = P(N(np,np(1 —p)) < x) (1)

provides one way to approximate P(Bin(n,p) < x).



e Normal approximation to Bin(n,p) with correction for continuity. Sup-
pose that X7, - -+, X, are IID Bin(1,p), then E(X;) = p and Var(X;) =

p(l—p).
When x = k is an integer, the formula

P(Bin(n,p) < k) = P(N(np,np(1 — p)) <k+0.5), (2)

provides a better approximation than the formula in (1).

Example 1. Suppose that X ~ Bin(80,0.7). Approximate P(X < 60)
and P(X > 60) using normal probabilities.

Sol. E(X) =80 x 0.7 =56 and Var(X) = 80 x 0.7 x (1 —0.7) = 16.8.

P(X <60) = P(X <59)
~ P(N(56,16.8) < 59+ 0.5)
59.5 — 56)

V168
~ P(N(0,1) < 0.85) ~ 0.5 + 0.3023 = 0.8023.

= r (N(O, 1) <

P(X >60)=1- P(X < 60) ~1—0.8023 = 0.1977.

e The probabilities P(Bin(n,p) < x) and P(N(u,s?) < z) can be com-
puted using R commands pbinom and pnorm respectively:

— P(Bin(n,p) < x) is computed using pbinom(x, size=n, prob=p)
— P(N(u,s?) < ) is computed using pnorm(z, mean=y, sd=s)

e Compare P(Bin(n,p) < x) with pbinom(x, size=n, prob=p) when p =
0.5, n = 10.

binom.cdf.values <- function(n,p){

ans <- rep(0, n+1)

ans[1] <- (1-p)°n

for (i in 2:(n+1)){ ans[i] <- ans[i-1] + choose(n,i-1)*p~(i-1)*(1-p)~(n-i+1) %}
return(ans)

}

binom.cdf <- function(x){ pbinom(x, size=10, prob=0.5) }

curve(binom.cdf, 0, 10, n=1000)

points((0:10), binom.cdf.values(10, 0.5), col=2)

The output graph shows that pbinom(x, size=10, prob=0.5) agrees
with P(Bin(10,0.5) < z) for x =0, 1, ..., 10.

e Compare P(N(0,1) < z) with pnorm(z, mean=0, sd=1) for € [-3, 3].



density.fun <- function(x){ exp(-x~2/2)/sqrt(2*pi) }

cdf.fun <- function(x){ integrate(density.fun, -Inf, x)$value }
x <= ((-300):300)/100

y <- X

for (i in 1:length(x)){ y[i] <- cdf.fun(x[i]) }
plot(x,y,type="1")

f <- function(x){ pnorm(x, mean=0, sd=1) }
curve(f,-3,3, add=T, col=2)

The output graph shows that P(N(0,1) < z) agrees with pnorm(z,
mean=0, sd=1) for x € [-3,3].

An experiment. We plot P(N (np, np(1—p) < z) and P(Bin(n,p) < z) for
1000 z’s in [—1,40] with (n,p) = (40,0.5). We also plot the probabilities
based on normal approximation with continuity correction. The R scripts
and the outputs are given below.

x <- seq(-1,40, length=1000)
n <- 40; p <- 0.5

#plot the cdf of N(m*p, n¥p*(1-p))
plot(x, pnorm(x, mean=n*p, sd=sqrt(n*px(1-p))), type="1", ylab="")

#add the cdf of Bin(n,p)
lines(x, pbinom(x, size=n, prob=p), col="red")
title("Normal approximation of binomial probabilities")

The plot is shown below. P(Bin(n,p) < z)’s are plotted in red. The plot
shows that the normal probabilities approximate the binomial probabili-
ties well.

Normal approximation of binomial probabilities

1.0

06 08
! L
S
e

04
—

0.0 0.2
L 1




We can also add the approximation with continuity correction:

x1 <= 0:40
points(xl, pnorm(x1+0.5, mean=n*p, sd=sqrt(n*p*(1-p))), col="blue")

The plot is shown below. The approximation probabilities with conti-
nuity correction are plotted in blue. The plot shows that the binomial
probabilities can be better approximated by the normal probabilities with
continuity correction.
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