
Normal distributions.

• Normal distributions are commonly used because distributions of aver-
ages of IID random variables can often be approximated well by normal
distributions.

• Normal distribution N(µ, σ2). Suppose that µ and σ > 0 are constants.
Suppose that X is a random variable with PDF fX , where

fX(x) =
1√
2πσ2

e
− (x− µ)2

2σ2 , −∞ < x < ∞.

Then the distribution of X is called the normal distribution with mean
µ and variance σ2, denoted by N(µ, σ2). Here e = limn→∞(1 + 1/n)n ≈
2.718.

• Fact 1 If X ∼ N(µ, σ2), then

X − µ

σ
∼ N(0, 1).

N(0, 1) is called the standard normal distribution (標準常態分布). The
result follows from Fact 1 in the handout “The probability density func-
tion (PDF) of a continuous random variable”.

• Fact 1 implies the probabilities, mean and variance for N(µ, σ2) can be
obtained using the probabilities, mean and variance for N(0, 1).

• The mean and variance for N(0, 1).

Example 1. Suppose that X ∼ N(0, 1). Find E(X) and V ar(X) using
R.

Sol. Let f be the PDF for N(0, 1). Then

E(X) =

∫ ∞

−∞
xf(x)dx

and

V ar(X) = E(X2)− (E(X))2 =

∫ ∞

−∞
x2f(x)dx− (E(X))2.

Running the following R codes gives
∫∞
−∞ xf(x)dx:
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f <- function(x){ exp(-x^2/2)/sqrt(2*pi) }

g <- function(x){ x*f(x) }

integrate(g,-Inf,Inf)$value

The output is 0, so

E(X) =

∫ ∞

−∞
xf(x)dx = 0.

Running the following R codes gives
∫∞
−∞ x2f(x)dx:

f <- function(x){ exp(-x^2/2)/sqrt(2*pi) }

g <- function(x){ x^2*f(x) }

integrate(g,-Inf,Inf)$value

The output is 1, so

E(X2) =

∫ ∞

−∞
x2f(x)dx = 1

and V ar(X) = E(X2)− (E(X))2 = 1− 02 = 1.

• Mean and variance for N(µ, σ2). Suppose that X ∼ N(µ, σ2). Then

E(X) = µ and V ar(X) = σ2. (1)

One may derive (1) using Fact 1 and the following results.

1. The mean and variance for N(0, 1) are 0 and 1 respectively.

2. For any constants a and b,

E(a+ bX) = a+ bE(X) and V ar(a+ bX) = b2V ar(X). (2)

• From Fact 1,

P (a < N(µ, σ2) < b) = P

(
a− µ

σ
< N(0, 1) <

b− µ

σ

)
.

• P (a < N(0, 1) < b) can be found by using R (or other software packages)
to compute ∫ b

a

1√
2π

e−x2/2dx.

Or, one can use normal tables to find P (a < N(0, 1) < b).

2



• Example 2. Find P (0 < N(0, 1) < 1.5) using R.

Sol. Running the following R codes gives P (0 < N(0, 1) < 1.5):

f <- function(x){ exp(-x^2/2)/sqrt(2*pi) }

integrate(f, 0, 1.5)$value

#Output: 0.4331928

• Example 3. Use the table “Normal probabilities” at

https://stat.walkup.tw/teaching/statistics/tables/normal.pdf

to find P (0 < N(0, 1) < 1.5) and P (0 < N(0, 1) < 1.51).

z 0.00 0.01 0.02 · · · 0.09
0.0 0.0000 0.0040 0.0080 · · · 0.0359
0.1 0.0398 0.0438 0.0478 · · · 0.0753
...

...
1.5 0.4332 0.4345 0.4357 · · · 0.4441
...

...
3.0 0.4987 0.4987 0.4987 · · · 0.4990

– P (0 < N(0, 1) < 1.5)
.
= 0.4332.

– P (0 < N(0, 1) < 1.51) = P (0 < N(0, 1) < (1.5 + 0.01))
.
= 0.4345.

• The N(0, 1) PDF is symmetric about 0. Therefore, for 0 ≤ a < b ≤ ∞,

P (−b < N(0, 1) < −a) = P (a < N(0, 1) < b).
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• Example 4. Find P (−1.5 < N(0, 1) < 1.3).

Sol.

P (−1.5 < N(0, 1) < 1.3) = P (−1.5 < N(0, 1) < 0) + P (0 ≤ N(0, 1) < 1.3)

= P (0 < N(0, 1) < 1.5) + P (0 < N(0, 1) < 1.3)
.
= 0.4332 + 0.4032 = 0.8364.

• Example 5. Find P (N(0, 1) > 1.3) and P (N(0, 1) < −1.5).

Sol.

P (N(0, 1) > 1.3) = P (N(0, 1) > 0)− P (0 < N(0, 1) ≤ 1.3)

= P (N(0, 1) > 0)− P (0 < N(0, 1) < 1.3)
.
= 0.5− 0.4032 = 0.0968,

and

P (N(0, 1) < −1.5) = P (N(0, 1) > 1.5)

= P (N(0, 1) > 0)− P (0 < N(0, 1) ≤ 1.5)

= P (N(0, 1) > 0)− P (0 < N(0, 1) < 1.5)
.
= 0.5− 0.4332 = 0.0668.

• Example 6. Suppose that X ∼ N(25, 100).

(a) Find P (25 < X < 35).

(b) Find P (X < 4).

Sol.

(a)

P (25 < X < 35) = P

(
25− 25

10
<

X − 25

10
<

35− 25

10

)
= P (0 < N(0, 1) < 1)

.
= 0.3413.

(b)

P (X < 4) = P

(
X − 25

10
<

4− 25

10

)
= P (N(0, 1) < −2.1)

= P (N(0.1) > 2.1)

= P (N(0, 1) > 0)− P (0 < N(0, 1) < 2.1)
.
= 0.5− 0.4821 = 0.0179.

4



• Example 7. Suppose that the daily average temperatures at a weather
station in July follow (approximately) the normal distribution with mean
25 degrees Celsius (攝氏25度) and standard deviation 10 degrees Celsius.

(a) What is the probability that in a future day in July, the average
temperature at the weather station is between 25 degrees Celsius
and 35 degrees Celsius?

(b) What is the probability that in a future day in July, the average
temperature at the weather station is below 4 degrees Celsius?

Sol. See the solution to Example 6.

• The empirical rule. Suppose that X ∼ N(µ, σ2) and σ > 0. Then

P (µ− kσ < X < µ+ kσ)
.
=

 0.68 if k = 1;
0.95 if k = 2;
1 if k = 3.

• Recall that for a random variableX such that E(X) = µ and
√
V ar(X) =

σ, Chebyshev’s theorem states that

P (µ− kσ < X < µ+ kσ) ≥ 1− 1

k2
=

 0 if k = 1;
0.75 if k = 2;
.
= 0.89 if k = 3.

(3)

If X ∼ N(µ, σ2), then from (1), (3) holds. However, the guaranteed
coverage probabilities from (3) are not very close to the exact coverage
probability.

• Consider the daily average temperature distribution in Example 7.

(a) Apply the empirical rule to find two temperatures such that
for about 95 percent of future days in July, the daily average
temperatures are between the two values.

(b) Apply the empirical rule to find two temperatures such that for
almost all of future days in July, the daily average temperatures
are between the two values.

Ans. For about 95 percent of future days in July, the daily average tem-
peratures are between 5 degrees Celsius and 45 degrees Celsius (25 ±
2(10)). For almost all of future days in July, the daily average tempera-
tures are between -5 degrees Celsius and 55 degrees Celsius (25± 3(10)).

• Fact 2 If X ∼ N(µ, σ2), then a+ bX ∼ N(E(a+ bX), V ar(a+ bX)) for
b ̸= 0.
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Example 8. Suppose that X ∼ N(1, 4) and Y = 5 − 2X. Find P (3 <
Y < 9).

Sol. E(Y ) = 5− 2E(X) = 3 and V ar(Y ) = 4V ar(X) = 16, so

P (3 < Y < 9) = P

(
0 <

Y − 3√
16

< 1.5

)
= P (0 < N(0, 1) < 1.5) = 0.4332.
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