Mean, variance and standard deviation

• Suppose that X is a random variable. Let X_1, \ldots, X_n, \ldots be IID random variables such that X_i and X have the same distribution. Then the mean (expectation; expected value; 期望値) of X is

$$\lim_{n\to\infty}\frac{(X_1+\cdots+X_n)}{n},$$

if the limit exists. We use E(X) or μ to denote the mean of X.

- Some properties of expectation.
 - Suppose that X and Y are two random variables, then

$$E(X + Y) = E(X) + E(Y).$$

- Suppose that X is a random variable and k is a constant (k is not random), then E(kX) = kE(X).
- For a constant k, E(k) = k.
- Suppose that X is a discrete random variable with PMF p_X . Then

$$E(X) = \sum_{x} x p_X(x). \tag{1}$$

Here the sum is taken over all possible values for the distribution (all x's such that $p_X(x) > 0$).

• Example 1. Suppose that X is a discrete random variable with PMF p_X , where

$$p_X(x) = \begin{cases} 0.2 & \text{if } x = 0; \\ 0.3 & \text{if } x = 1; \\ 0.5 & \text{if } x = 2; \\ 0 & \text{otherwise.} \end{cases}$$

Find E(X).

Sol.
$$E(X) = 0 \times 0.2 + 1 \times 0.3 + 2 \times 0.5 = 1.3$$
.

• For a random variable X with mean μ , the variance of X is

$$E(X-\mu)^2$$
.

We use Var(X) to denote the variance of X.

- Note: $Var(X) = E(X^2) (E(X))^2$.
- To compute Var(X) for a discrete random variable X, the following result is used:

Fact 1 Suppose that X is a discrete random variable with PMF p_X , then for a real-valued function g such that g(X) is defined,

$$E(g(X)) = \sum_{x: p_X(x) > 0} g(x)p_X(x).$$

• If X is discrete with PMF p_X and mean μ , then

$$Var(X) = \sum_{x} (x - \mu)^2 p_X(x) = \left(\sum_{x} x^2 p_X(x)\right) - \mu^2.$$
 (2)

Example 2. Find Var(X) for the X in Example 1.

Sol. $Var(X) = (0-1.3)^2 \times 0.2 + (1-1.3)^2 \times 0.3 + (2-1.3)^2 \times 0.5 = 0.61$. Or,

$$Var(X) = E(X^2) - (1.3)^2$$

= $0^2 \times 0.2 + 1^2 \times 0.3 + 2^2 \times 0.5 - 1.69 = 0.61$.

- The standard deviation of X is $\sqrt{Var(X)}$. We use σ to denote the standard deviation of X, so Var(X) is also denoted by σ^2 .
- Chebyshev's theorem. Suppose that $\mu = E(X)$ and $\sigma = \sqrt{Var(X)}$, then for k > 0,

$$P(|X - \mu| \le k\sigma) \ge 1 - \frac{1}{k^2}.$$
 (3)

(3) is called Chebyshev's inequality.

Example 3. Suppose that X is a random variable whose mean and standard deviation are 75 and 2 respectively. Find an interval A such that $P(X \in A) \ge 0.8$.

- Sol. Solving $1-1/k^2=0.8$ gives $k=\sqrt{5}$. By Chebyshev's Theorem, $P(|X-75| \leq \sqrt{5} \times 2) \geq 0.8$. Take A to be the interval $[75-2\sqrt{5},75+2\sqrt{5}] \approx [70.52786,79.47214]$, then $P(X \in A) \geq 0.8$.
- ullet Suppose that X and Y are two random variables. If X and Y are independent, then

$$E(XY) = E(X)E(Y) \tag{4}$$

and

$$Var(X+Y) = Var(X) + Var(Y).$$
 (5)

Note.

– (4) can be verified using the PMF's of X and Y if X and Y are discrete.

- (5) follows from (4).
- Suppose that X_1, \ldots, X_n are IID and $E(X_1) = \mu$, $Var(X_1) = \sigma^2$. Let $\bar{X} = (\sum_{i=1}^n X_i)/n$, then

$$E(\bar{X}) = \mu \tag{6}$$

and

$$Var(\bar{X}) = \frac{\sigma^2}{n}. (7)$$

Note.

- (7) follows from (5).
- From (6), (7) and Chebyshev's theorem, if we have a random sample (X_1, \ldots, X_n) , it is reasonable to estimate $\mu = E(X_1)$ using \bar{X} .