
Density estimation based on basis function approximation

• Suppose that X1, . . ., Xn are IID data with density function f . The
problem of interest is to estimate f based on X1, . . ., Xn based on basis
function approximation.

• Suppose that B1, . . ., Bm is a set of basis functions such that a smooth
function can be approximated well by

∑m
j=1 ajBj for some (a1, . . . , am).

• A quick way to estimate f with f ≈
∑m

j=1 ajBj is to use the method of
moment approach to estimate a = (a1, . . . , am).

– Idea: for k = 1, . . ., m,

1

n

n∑
i=1

Bk(Xi) ≈
∫

f(x)Bk(x)dx ≈
m∑
j=1

aj

∫
Bj(x)Bk(x)dx

Solve a = (a1, . . . , am) so that

1

n

n∑
i=1

Bk(Xi) =

m∑
j=1

aj

∫
Bj(x)Bk(x)dx

• Example 1. Perform density estimation using spline basis approximation
and method of moments. The data are IID data generated from a mixture
distribution with probability density f = 0.5f1 + 0.5f2, where

f1(x) =

{
1

c1
√

2πσ2
1

e−(x−µ1)
2/2σ2

1 ; if x ∈ (0, 1);

0 otherwise,

µ1 = 0.2, σ1 = 0.1,

f2(x) =

{
1

c2
√

2πσ2
2

e−(x−µ2)
2/2σ2

2 ; if x ∈ (0, 1);

0 otherwise,

µ2 = 0.7, σ2 = 0.2, and c1 and c2 are constants so that
∫
f1(x)dx = 1 =∫

f2(x)dx. For spline approximation, use cubic spline basis functions with
inner knots 1/5, 2/5, 3/5, 4/5 and boundary knots 0, 1. Let B1, . . ., B8

denote those basis functions. The true density f is approximated using
linear combination of B1, . . ., B8.

###generate data of size 1000 (stored in x) from density f

set.seed(1)

mu1=.2

mu2=.7

n <- 1000

m <- n*10

z <- rnorm(m,mean=mu1,sd=.1); x <- z[(z>0)&(z<1)]

x <- x[1:n]

z <- rnorm(m,mean=mu2,sd=.2); x2 <- z[(z>0)&(z<1)]

x2 <- x2[1:n]

z <- sample(0:1, size = n, replace=T)
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x[z==1] <- x2[z==1]

#### compute the matrix whose (i,j)th element is the integral of B_iB_j

require("splines")

knotlist <- (1:4)/5

nb <- length(knotlist)+4

M <- matrix(0, nb, nb)

for (i in 1:nb){

for (j in i:nb){

tem <- function(u){

bx <- bs(u, knots = knotlist, Boundary.knots = c(0,1), intercept=T)

return( bx[,i]*bx[,j])

}

M[i,j] <- integrate(tem, 0, 1)$value

if (j > i) { M[j,i] <- M[i,j] }

}

}

#### compute fhat, the estimator of f using method of moments

moments <- apply(bs(x, knots = knotlist, Boundary.knots=c(0,1), intercept=T), 2, mean)

ahat <- solve( M, moments)

fhat <- function(u){

ans <- bs(u, knots = knotlist, Boundary.knots = c(0,1), intercept=T) %*% ahat

return( as.numeric(ans) )

}

##### compare fhat with the true density f

k0=pnorm(1, mean=mu1,sd=.1)-pnorm(0,mean=mu1,sd=.1)

k1=pnorm(1, mean=mu2,sd=.2)-pnorm(0,mean=mu2,sd=.2)

f <- function(x){

ans <- 0.5*dnorm(x, mean=mu1, sd=.1)/k0 + 0.5 *dnorm(x, mean=mu2, sd=.2)/k1

ans[x>1]=0

ans[x<0]=0

return(ans)

}

curve(f,0,1)

curve(fhat,0,1, add=T, col=2)

## compute ISE

tem <- function(u){ (fhat(u)-f(u))^2 }

integrate(tem,0,1)

#0.006720843

####### obtain a normalized version

k2 <- integrate(fhat,0,1)$value

fhat1 <- function(u){ fhat(u)/k2 }

curve(fhat1,0,1, add=T, col=3)

###### Check spline approximation accuracy using the given basis functions
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x0 <- (1:1000)/1001

y1 <- f(x0)

bx <- bs(x0,knots=knotlist, Boundary.knots = c(0,1), intercept = T)

y1.lm <- lm(y1~bx-1)

lines(x0, y1.lm$fitted, col=4)

f.reg <- function(u){

bx <- bs(u,knots=knotlist, Boundary.knots = c(0,1), intercept = T)

ans <- bx%*% y1.lm$coefficients

return(ans[,1])

}

tem <- function(u){ (f.reg(u)-f(u))^2 }

integrate(tem,0,1)

#0.001820952

• Suppose that log f can be approximated using
∑m

j=1 ajBj , where B1, . . .,
Bm are basis functions, then an approximation of f is given by

fa(x) =
exp(

∑m
j=1 ajBj(x))∫

exp(
∑m

j=1 ajBj(x))dx
,

where a = (a1, . . . , am). Note that
∫
fa(x)dx = 1. Suppose that there

exist constants c1, . . ., cm such that

1 =

m∑
j=1

cjBj(x), (1)

then

ln fa(x) =

m∑
j=1

(aj − λ(a)cj)Bj(x), (2)

where

λ(a) = ln

(∫
e

∑m

j=1
ajBj(x)dx

)
.

Then the coeficients a1, . . ., am can be estimated using maximum likeli-
hood and m can be determined using likelihood cross-validation.

• Suppose that B1, . . ., Bm are B-spline basis functions, we have

1 =

m∑
j=1

Bj(x),

so (1) holds with cj = 1 for all j.

• Leave-one-out likelihood cross-validation. Let f̂−i,m be the estimator for
f with parameter m based on X1, . . ., Xn with Xi removed. Let

LikCV (m) =

n∑
i=1

log f̂−i,m(Xi),

then m is selected so that LikCV (m) is maximized.
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• Exercise 1. Consider the data generating process and the density esti-
mation procedure (with normalization) in Example 1. Check whehter the
density estimation be improved for the following cases.

(a) The sample size n increases to 5000 or 10000.

(b) The knots are replaced with 1/9, 2/9, . . ., 8/9.

(c) The knots are replaced with the knots in Part (b) and the sample
size n increases to 10000.

• Exercise 2. Consider the data in Example 1. Perform density estimation
by modelling ln f as the ln fa in (2) using the Bjs in Example 1 and
estimating a using maximum likelihood estimation. Find the ISE.

• Exercise 3. Consider the data generating process in Example 1. Suppose
that the density f is estimated using the approach in Example 1 except
the number of knots is chosen from {4, 8} based on likelihood CV. How
often the likelihood CV approaches chooses the best number of knots?
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