Kernel regression

e Nonparametric regression. Suppose that (X1,Y7), ..., (X,,Y,) are IID
data and

Vi =m(Xi) +e (1)

for i = 1, ..., n, where (g1, ..., €,) is independent of (X3, ..., X,,),

E(e1) = 0 and Var(e1) = 0?. The problem of interest is to estimate m
based on (X1,Y7), ..., (Xn,Yn).

e Kernel function. A kernel function k on (—oo,00) usually satisfies the
usual constraints:

(a) k> 0.

(b) J7 k(s)ds = 1.

(c) J7o sk(s)ds = 0.

(d) 72 s%k(s)ds < oco.

e Kernel regression estimator. Suppose that (X1,...,X,,) is a random sam-
ple and X; takes values in (—o0, 00) for i = 1, ..., n. The kernel regression
estimator for m(z) with kernel k£ and bandwidth A is
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e The estimation error m(z) — m(z).
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e Mean and variance of I.
E(I) = E ((nh)1 > (Vi = m(@)k((z — Xi)/h)>
i=1

= [[aertaan (LD ¢ piant @) + o0,

and

Var(I) = # [E ((Y1 — m(x))2k2((x - Xl)/h))]

B n% [hQ /uz () du <W + f’(x>m’(x)) + o(h2)]
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= % [UQf(:r)/kQ(u)du] —%4 [/ u?k(u)du (W +f’(:v)m’(x)>]2
+o (nlh> +o (f:) .
Thus if nh — oo and h — 0 as n — o0,
E(I*) = E <(nh)1 Zj;(Y —m(xz))k((z — Xﬂﬂt))2
= {02 (@) / kQ(u)du} +p [ / w2k(w)du (W 4 f/(x)m’(x)ﬂ i
1

+o (m) + o(h*).

Mean and variance for II. Let f be the density of X;. Suppose that
nh — oo and h — 0 as n — oo, then E(II) — f(z) = 0 and Var(II) —
0 asn — oo, so Il ~ f(x) for large n and E(m(x) — m(x))? can be
approximated by

% (W) + b U W) du (m';(x) N f/(jt)(zL)/(x)>:|2'

Kernel function on R%. A kernel function k on R? usually satisfies the
usual constraints:

(a) k> 0.

(b) [k(s)ds =1.

(¢) [sik(s1,...,8q)d(s1,...,84) =0fori=1, ..., d.
(@) [ lIsl1?k(s)ds < oo.

Kernel regression estimator on R?. Suppose that X; takes values in R?

for i =1, ..., n. The kernel regression estimator for m(z) with kernel k
and bandwidth h is

A(péy”k(m_hxj)
ilk(:c—hx> ‘

Bandwidth selection. We use leave-one-out cross validation to choose h for
a given kernel k. Let m_; ;, be the kernel estimator for m with bandwidth
h based on (X17Y1), ceey (Xi_l,ifi_l), (Xi+17}/;+1), ceay (X.,L,Yn). Let

RSSCV (h) = Xn:(Yi — 10 (Xi))%

i=1

Leave-one-out cross validation: choose the bandwidth h so that RSSCV (h)
is minimized.



e Bandwidth selection rule(s) can be found in [1].

e An example of approximating the bias of an estimator via simulation.
Suppose that X3, ..., X, is a random sample from ]\C(u, 1) and consider

estimating u using the sample mean X. The bias of X when n = 50 and
1 = 20 can be approximated using simulation.

#generate 1000 samples of size 50 from N(20,1)

#and store the 1000 sample means in x

x <- rep(0,1000)

for (i in 1:1000){ x[i] <- mean(rnorm(50,mean=20, sd=1)) }

#compute the approximate bias (expected value for sample mean - 20 )
sum(x - 20)/1000

e Exercise 1. Write a function using R with the following input and output:

Input: data (X1,Y1), ..., (X,,Y,), kernel function k, bandwith h,
and evaluation point xg.

Output: m(xo).
You may assume zq is one dimensional.

e Exercise 2. Consider the model in (1) with n = 1000, m(z) = sin(20z),
where X is uniformly distributed on [—1, 1] and the errors are IID N (0, (0.01)?).
Let

I(zo) = ((nh)_l > (¥ = mlxo)) k(w0 — Xi)/h)> ;
i=1
where k is the probability density function of N(0,1).

(a) Compute E(I(z)) for zo = 0.1 and h € {0.01,0.005,0.001,0.0005}.
Note that

o0
E(I(xg)) = / (m(zg — hu) — m(xo)) f(xo — hu)k(u)du
— 00
and the R command for computing fab g(x)dx is integrate(g,a,b).

(b) Approximate E(I(xg)) for 2o = 0.1 and h € {0.01,0.0005} by IID
data (X1,Y7), ..., (X,,Y,) 10* times according to (1) with the above
setup.

e Exercise 3. Write a function using R with the following input and output:

Input: data (X1,Y1), ..., (X,,Y,), kernel function k, a vector of
bandwidths (h1,...,hs) and evaluation point xg.
Output: mm(zg), where the bandwidth is chosen among hy, ..., hy

using leave-one-out cross validation.

You may assume zq is one dimensional.
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