Kernel regression

• Nonparametric regression. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are IID data and

$$Y_i = m(X_i) + \varepsilon_i \tag{1}$$

for i = 1, ..., n, where $(\varepsilon_1, ..., \varepsilon_n)$ is independent of $(X_1, ..., X_n)$, $E(\varepsilon_1) = 0$ and $Var(\varepsilon_1) = \sigma^2$. The problem of interest is to estimate m based on $(X_1, Y_1), ..., (X_n, Y_n)$.

- Kernel function. A kernel function k on $(-\infty, \infty)$ usually satisfies the usual constraints:
 - (a) $k \ge 0$.
 - (b) $\int_{-\infty}^{\infty} k(s)ds = 1$.
 - (c) $\int_{-\infty}^{\infty} sk(s)ds = 0$.
 - (d) $\int_{-\infty}^{\infty} s^2 k(s) ds < \infty$.
- Kernel regression estimator. Suppose that $(X_1, ..., X_n)$ is a random sample and X_i takes values in $(-\infty, \infty)$ for i = 1, ..., n. The kernel regression estimator for m(x) with kernel k and bandwidth h is

$$\hat{m}(x) = \frac{\sum_{i=1}^{n} Y_i k\left(\frac{x - X_i}{h}\right)}{\sum_{i=1}^{n} k\left(\frac{x - X_i}{h}\right)}.$$

• The estimation error $\hat{m}(x) - m(x)$.

$$\hat{m}(x) - m(x) = \underbrace{\frac{\frac{1}{nh} \sum_{i=1}^{n} (Y_i - m(x)) k\left(\frac{x - X_i}{h}\right)}{\sum_{i=1}^{n} k\left(\frac{x - X_i}{h}\right)}}_{II}.$$

• Mean and variance of *I*.

$$E(I) = E\left((nh)^{-1} \sum_{i=1}^{n} (Y_i - m(x))k((x - X_i)/h)\right)$$
$$= h^2 \int u^2 k(u) du \left(\frac{f(x)m''(x)}{2} + f'(x)m'(x)\right) + o(h^2),$$

and

$$Var(I) = \frac{1}{nh^2} \left[E\left((Y_1 - m(x))^2 k^2 ((x - X_1)/h) \right) \right]$$
$$- \frac{h^2}{nh^2} \left[h^2 \int u^2 k(u) du \left(\frac{f(x)m''(x)}{2} + f'(x)m'(x) \right) + o(h^2) \right]^2$$

$$= \frac{1}{nh} \left[\sigma^2 f(x) \int k^2(u) du \right] - \frac{h^4}{n} \left[\int u^2 k(u) du \left(\frac{f(x)m''(x)}{2} + f'(x)m'(x) \right) \right]^2 + o \left(\frac{1}{nh} \right) + o \left(\frac{h^4}{n} \right).$$

Thus if $nh \to \infty$ and $h \to 0$ as $n \to \infty$,

$$E(I^{2}) = E\left((nh)^{-1} \sum_{i=1}^{n} (Y_{i} - m(x))k((x - X_{i})/h)\right)^{2}$$

$$= \frac{1}{nh} \left[\sigma^{2} f(x) \int k^{2}(u) du\right] + h^{4} \left[\int u^{2} k(u) du \left(\frac{f(x)m''(x)}{2} + f'(x)m'(x)\right)\right]^{2}$$

$$+ o\left(\frac{1}{nh}\right) + o(h^{4}).$$

• Mean and variance for II. Let f be the density of X_i . Suppose that $nh \to \infty$ and $h \to 0$ as $n \to \infty$, then $E(II) - f(x) \to 0$ and $Var(II) \to 0$ as $n \to \infty$, so $II \approx f(x)$ for large n and $E(\hat{m}(x) - m(x))^2$ can be approximated by

$$\frac{1}{nh} \left(\frac{\sigma^2 \int k^2(u) du}{f(x)} \right) + h^4 \left[\int u^2 k(u) du \left(\frac{m''(x)}{2} + \frac{f'(x)m'(x)}{f(x)} \right) \right]^2.$$

- Kernel function on \mathbb{R}^d . A kernel function k on \mathbb{R}^d usually satisfies the usual constraints:
 - (a) $k \ge 0$.
 - (b) $\int k(s)ds = 1$.
 - (c) $\int s_i k(s_1, \dots, s_d) d(s_1, \dots, s_d) = 0$ for $i = 1, \dots, d$
 - (d) $\int ||s||^2 k(s) ds < \infty$.
- Kernel regression estimator on R^d . Suppose that X_i takes values in R^d for i = 1, ..., n. The kernel regression estimator for m(x) with kernel k and bandwidth h is

$$\hat{m}(x) = \frac{\sum_{i=1}^{n} Y_i k\left(\frac{x - X_i}{h}\right)}{\sum_{i=1}^{n} k\left(\frac{x - X_i}{h}\right)}.$$

• Bandwidth selection. We use leave-one-out cross validation to choose h for a given kernel k. Let $\hat{m}_{-i,h}$ be the kernel estimator for m with bandwidth h based on $(X_1, Y_1), \ldots, (X_{i-1}, Y_{i-1}), (X_{i+1}, Y_{i+1}), \ldots, (X_n, Y_n)$. Let

$$RSSCV(h) = \sum_{i=1}^{n} (Y_i - \hat{m}_{-i,h}(X_i))^2.$$

Leave-one-out cross validation: choose the bandwidth h so that RSSCV(h) is minimized.

- Bandwidth selection rule(s) can be found in [1].
- An example of approximating the bias of an estimator via simulation. Suppose that X_1, \ldots, X_n is a random sample from $N(\mu, 1)$ and consider estimating μ using the sample mean \bar{X} . The bias of \bar{X} when n = 50 and $\mu = 20$ can be approximated using simulation.

```
#generate 1000 samples of size 50 from N(20,1)  
#and store the 1000 sample means in x  
x <- rep(0,1000)  
for (i in 1:1000){ x[i] <- mean(rnorm(50,mean=20, sd=1)) }  
#compute the approximate bias (expected value for sample mean - 20 )  
sum(x - 20)/1000
```

• Exercise 1. Write a function using R with the following input and output:

Input: data $(X_1, Y_1), \ldots, (X_n, Y_n)$, kernel function k, bandwith h, and evaluation point x_0 .

Output: $\hat{m}(x_0)$.

You may assume x_0 is one dimensional.

• Exercise 2. Consider the model in (1) with n = 1000, $m(x) = \sin(20x)$, where X_i is uniformly distributed on [-1, 1] and the errors are IID $N(0, (0.01)^2)$. Let

$$I(x_0) = \left((nh)^{-1} \sum_{i=1}^{n} (Y_i - m(x_0)) k((x_0 - X_i)/h) \right),$$

where k is the probability density function of N(0,1).

(a) Compute $E(I(x_0))$ for $x_0 = 0.1$ and $h \in \{0.01, 0.005, 0.001, 0.0005\}$. Note that

$$E(I(x_0)) = \int_{-\infty}^{\infty} (m(x_0 - hu) - m(x_0)) f(x_0 - hu) k(u) du$$

and the R command for computing $\int_a^b g(x)dx$ is integrate(g,a,b).

- (b) Approximate $E(I(x_0))$ for $x_0 = 0.1$ and $h \in \{0.01, 0.0005\}$ by IID data $(X_1, Y_1), \ldots, (X_n, Y_n)$ 10^4 times according to (1) with the above setup.
- Exercise 3. Write a function using R with the following input and output:

Input: data $(X_1, Y_1), \ldots, (X_n, Y_n)$, kernel function k, a vector of bandwidths (h_1, \ldots, h_ℓ) and evaluation point x_0 .

Output: $\hat{m}(x_0)$, where the bandwidth is chosen among h_1, \ldots, h_ℓ using leave-one-out cross validation.

You may assume x_0 is one dimensional.

References

[1] W. WAND AND M. JONES, Kernel Smoothing, Chapman & Hall, 1995.