
Kernel density estimation

• Suppose that X1, . . ., Xn are IID data with Lebesgue density f . The
kernel density estimator of f using kernel function k and bandwidth h is
given by

f̂(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
. (1)

• Kernel function. A kernel function k usually satisfies the usual constraints:

(a) k ≥ 0.

(b)
∫∞
−∞ k(s)ds = 1.

(c)
∫∞
−∞ sk(s)ds = 0.

(d)
∫∞
−∞ s2k(s)ds < ∞.

• Mean and variance of f̂(x0). Suppose that h → 0 as n → ∞,
∫∞
−∞ k2(s)ds <

∞, and f ′′ is continuous at x0. Suppose that f > 0 on (a, b) and f = 0
outside (a, b). Then it can be shown that

E(f̂(x0)) = E

(
(nh)−1

n∑
i=1

k((x0 −Xi)/h)

)

= f(x0)

∫ (x0−a)/h

(x0−b)/h

k(u)du− hf ′(x0)

∫ (x0−a)/h

(x0−b)/h

uk(u)du

+
f ′′(x0)h

2

2

∫ (x0−a)/h

(x0−b)/h

u2k(u)du+ o(h2) (2)

and

V ar(f̂(x0)) =
1

nh2

[
E
(
k2((x0 −X1)/h)

)]
− 1

n
E
(
h−1k((x0 −X1)/h)

)
=

1

nh

[
f(x0)

∫ (x0−a)/h

(x0−b)/h

k2(u)du+ o(1)

]
+O

(
1

n

)
.

When a < x0 < b, (x0 − a)/h → ∞ and (x0 − b)/h → −∞,

E(f̂(x0)) → f(x0)

as h → 0. However, if x0 ≈ a or x0 ≈ b, the bias of f̂(x0) can be very
large.

• Example 1. Compute the kernel density estimator based on 5000 obser-
vations from Uniform(0, 1).

fhat0 <- function(x, x0, h, k){ return(mean( k((x0-x)/h)/h )) }

get_fhat <- function(x,h, k=dnorm){

f <- function(x0){ return( fhat0(x,x0,h, k) ) }

f1 <- Vectorize(f); return(f1)

}
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set.seed(1)

x <- runif(5000)

fhat <- get_fhat(x, 0.07)

curve(fhat,0,1)

curve(dunif,0,1,add=T,col=2)

• Boundary bias correction. Suppose that f > 0 on (a, b) and f = 0 outside
(a, b). Consider replacing the kernel k in (2) by k1, where

k1(u) = Ak(u) +Buk(u) (3)

for −∞ < u < ∞ and A and B are two constants such that∫ (x0−a)/h

(x0−b)/h

k1(u)du = 1 (4)

and ∫ (x0−a)/h

(x0−b)/h

uk1(u)du = 0. (5)

For i = 0, 1, 2, let

gi(s, t) =

∫ t

s

uik(u)du

ai(x0) = gi

(
x0 − b

h
,
x0 − a

h

)
.

Then (4) and (5) can be written as{
a0(x0)A+ a1(x0)B = 1
a1(x0)A+ a2(x0)B = 0

Solving for A, B and plug the results in (3), then we have

k1(u) =
a2(x0)k(u)− a1(x0)uk(u)

a0(x0)a2(x0)− a21(x0)

for u ∈ (−∞,∞). We can then estimate f(x0) using

f̂L(x0) =
1

nh

n∑
i=1

k1

(
x0 −Xi

h

)
. (6)

• Let ϕ be the N(0, 1) PDF (dnorm) and Φ be the N(0, 1) CDF (pnorm).
Then for k = ϕ,

g0(s, t) = Φ(t)− Φ(s),

g1(s, t) = −ϕ(t) + ϕ(s),

and
g2(s, t) = −tϕ(t) + sϕ(s) + Φ(t)− Φ(s)

• The idea for the above correction can be found in a PDF file by Tine
Buch-Kromann. Title: Simple boundary correction for kernel density es-
timation. Link:
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https://www.semanticscholar.org/paper/

Simple-boundary-correction-for-kernel-density-Buch-Kromann/

b2b73f1a526a5d8064cecc61473c20bec6644942

• Bandwidth selection. We use leave-one-out cross-validation to choose h
for a given kernel k. Two types of cross-validation are considered:

– Least square cross-validation;

– Likelihood cross-validation.

• Leave-one-out least square cross-validation. Let f̂−i,h be the kernel esti-
mator for f with bandwidth h based on X1, . . ., Xn with Xi removed and
f̂h be the kernel estimator for f with bandwidth h based on X1, . . ., Xn.
Let

LSCV (h) =

∫
f̂2
h(x)dx− 2

n

n∑
i=1

f̂−i,h(Xi).

Leave-one-out least square cross-validation: choose the bandwidth h so
that LSCV (h) is minimized.

• Leave-one-out likelihood cross-validation. Let f̂−i,h be the kernel esti-
mator for f with bandwidth h based on X1, . . ., Xn with Xi removed.
Let

LikCV (h) =

n∑
i=1

log f̂−i,h(Xi).

Leave-one-out likelihood cross-validation: choose the bandwidth h so that
LikCV (h) is maximized.

– Suppose that f and g are positive probability density functions. Then∫
log

(
f(x)

g(x)

)
f(x)dx ≥ 0,

and equality holds when f = g almost everywhere.

• More information about least square cross-validation and likelihood cross-
validation can be found in [1] and [2].

• Exercise 1.

(a) Write an R function that computes the kernel density estimator of f
in (6) with given data, kernel and bandwidth.

(b) Suppose that n = 5000. Compute the IMSE of the kernel estimator
in (6) based on simulated data X1, . . ., Xn from Uniform(0, 1). The
kernel function k used for computing k1 in (6) is the N(0, 1) PDF
and the bandwidth h = 0.08. The IMSE is computed based on 200
simulation runs.

(c) Compute the IMSE of the kernel estimator in (1) based on simulated
data X1, . . ., Xn in Part (b). The kernel function k used in (1) is the
N(0, 1) PDF and the bandwidth h = 0.08. Compare the IMSE with
the IMSE in Part (b).
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Exercise 2.

(a) Suppose that n = 100. Compute the IMSE of the kernel estimator
in (1) based on simulated data X1, . . ., Xn from N(0, 1). The kernel
function k is the N(0, 1) PDF and the bandwidth h is selected by
leave-one-out least square cross-validation. The IMSE is computed
based on 200 simulation runs. The range of h is [1/n, 0.5].

(b) Do Part (a) again with least square cross-validation replaced by like-
lihood cross-validation (using the same data). Compare the IMSE
with the IMSE from Part (a).

Exercise 3. Suppose that n = 5000. Generate IID data X1, . . ., Xn from
the exponential distribution with mean 1.

(a) Estimate the density of Xi using the f̂ in (1) with k being the N(0, 1)

PDF and h = 0.08. Approximate the bias E(f̂(0)) − f(0) based on
200 simulation runs.

(b) Propose a kernel density estimator f̂ so that the boundary bias at 0
can be corrected. Use h = 0.08. Compute the IMSE based on 200
runs.

• Multivariate kernel density estimation. Suppose that X1, . . ., Xn are IID
data with Lebesgue density f on Rd. The kernel density estimator of f
using kernel function k and bandwidth h is given by

f̂(x) =
1

nhd

n∑
i=1

k

(
x−Xi

h

)
.

• Kernel function on Rd. A kernel function k on Rd usually satisfies the
usual constraints:

(a) k ≥ 0.

(b)
∫
k(s)ds = 1.

(c)
∫
sjk(s1, . . . , sd)d(s1, . . . , sd) = 0 for j = 1, . . ., d.

(d)
∫
∥s∥2k(s)ds < ∞, where ∥(s1, . . . , sd)∥2 =

∑d
j=1 s

2
j .

• Example of a kernel function on Rd. Let k1, . . ., kd be d univariate kernel
functions. Define

k(x1, . . . , xd) = k1(x1) · · · kd(xd) (7)

for (x1, . . . , xd) ∈ Rd. Then k is a kernel function on Rd. A kernel k of
the form in (7) is called a product kernel.
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