Kernel density estimation

e Suppose that X;, ..., X,, are IID data with Lebesgue density f. The
kernel density estimator of f using kernel function & and bandwidth A is

given by
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e Kernel function. A kernel function k usually satisfies the usual constraints:

(a) k> 0.

(b) [T k(s)ds =1.

(c) 72, sk(s)ds = 0.

(d) 72 s%k(s)ds < oo.

e Mean and variance of f(z0). Suppose that i — 0 as n — oo, 7 KA (s)ds <

0o, and f” is continuous at zo. Suppose that f > 0 on (a,b) and f =0
outside (a,b). Then it can be shown that
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When a < zg < b, (£g —a)/h — 0o and (z¢ — b)/h — —o0,

E(f(x0)) = f(o)
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as h — 0. However, if g &~ a or xg ~ b, the bias of f(xo) can be very
large.

e Example 1. Compute the kernel density estimator based on 5000 obser-
vations from Uniform(0,1).

fhat0 <- function(x, x0, h, k){ return(mean( k((x0-x)/h)/h )) }
get_fhat <- function(x,h, k=dnorm){

f <- function(x0){ return( fhatO(x,x0,h, k) ) }

f1 <- Vectorize(f); return(fl)

}



set.seed(1)

x <- runif (5000)

fhat <- get_fhat(x, 0.07)
curve (fhat,0,1)
curve(dunif,0,1,add=T,col=2)

Boundary bias correction. Suppose that f > 0 on (a,b) and f = 0 outside
(a,b). Consider replacing the kernel k in (2) by ki, where

ky(u) = Ak(u) + Buk(u) (3)

for —o0o < u < 00 and A and B are two constants such that

(wo—a)/h
/ ki(u)du =1 (4)
(zo—b)/h
and
(zo—a)/h
/ uky (uw)du = 0. (5)
(zo—b)/h

For ¢ =0, 1, 2, let
¢
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Then (4) and (5) can be written as

{ ao(.’to)A + al(xO)B =1
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Solving for A, B and plug the results in (3), then we have
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for u € (—o0, 00). We can then estimate f(zg) using

fL(xO);hikl <x0hXi>~ (6)

Let ¢ be the N(0,1) PDF (dnorm) and ® be the N(0,1) CDF (pnorm).
Then for k = ¢,

go(s,t) = @(t) — D(s),
91(s,t) = —o(t) + &(s),
and

g2(s,t) = —te(t) + s¢(s) + B(t) — (s)

The idea for the above correction can be found in a PDF file by Tine
Buch-Kromann. Title: Simple boundary correction for kernel density es-
timation. Link:



https://www.semanticscholar.org/paper/
Simple-boundary-correction-for-kernel-density-Buch-Kromann/
b2b73f1a526a5d8064cecc61473c20bec6644942

e Bandwidth selection. We use leave-one-out cross-validation to choose h
for a given kernel k. Two types of cross-validation are considered:

— Least square cross-validation;

— Likelihood cross-validation.

e Leave-one-out least square cross-validation. Let f_m be the kernel esti-
mator for f with bandwidth h based on X7, ..., X;, with X; removed and
fn be the kernel estimator for f with bandwidth h based on X7, ..., X,.
Let

LSCV(h) = [ fi()da~ 2 30 F-an(X0)

Leave-one-out least square cross-validation: choose the bandwidth A so
that LSCV (h) is minimized.

e Leave-one-out likelihood cross-validation. Let f,i’h be the kernel esti-
mator for f with bandwidth h based on Xi, ..., X,, with X; removed.
Let

LikCV (h) = log f; n(X).
=1

Leave-one-out likelihood cross-validation: choose the bandwidth h so that
LikCV (h) is maximized.

— Suppose that f and g are positive probability density functions. Then

J1o8 (22 forac =0

and equality holds when f = g almost everywhere.

e More information about least square cross-validation and likelihood cross-
validation can be found in [1] and [2].

e Exercise 1.

(a) Write an R function that computes the kernel density estimator of f
in (6) with given data, kernel and bandwidth.

(b) Suppose that n = 5000. Compute the IMSE of the kernel estimator
in (6) based on simulated data X, ..., X, from Uniform(0,1). The
kernel function k used for computing k; in (6) is the N(0,1) PDF
and the bandwidth A = 0.08. The IMSE is computed based on 200

simulation runs.

(¢) Compute the IMSE of the kernel estimator in (1) based on simulated
data X1, ..., X, in Part (b). The kernel function k used in (1) is the
N(0,1) PDF and the bandwidth h = 0.08. Compare the IMSE with
the IMSE in Part (b).



Exercise 2.

(a) Suppose that n = 100. Compute the IMSE of the kernel estimator
in (1) based on simulated data X, ..., X,, from N(0,1). The kernel
function k is the N(0,1) PDF and the bandwidth % is selected by
leave-one-out least square cross-validation. The IMSE is computed
based on 200 simulation runs. The range of h is [1/n,0.5].

(b) Do Part (a) again with least square cross-validation replaced by like-
lihood cross-validation (using the same data). Compare the IMSE
with the IMSE from Part (a).

Exercise 3. Suppose that n = 5000. Generate IID data X1, ..., X,, from
the exponential distribution with mean 1.

(a) Estimate the density of X; using the f in (1) with k being the N(0,1)

PDF and h = 0.08. Approximate the bias E(f(0)) — f(0) based on
200 simulation runs.

(b) Propose a kernel density estimator f so that the boundary bias at 0
can be corrected. Use h = 0.08. Compute the IMSE based on 200
runs.

e Multivariate kernel density estimation. Suppose that X1, ..., X,, are IID
data with Lebesgue density f on R?. The kernel density estimator of f
using kernel function k and bandwidth h is given by

f<x>=7£dik<x‘,fi).

e Kernel function on R?. A kernel function k& on R? usually satisfies the
usual constraints:

(a) k>0.

(b) [k(s)ds=1.
(¢) [sjk(s1,...,8a)d(s1,...,8q4) =0for j=1,...,d.
(d) [ |s]|2k(s)ds < oo, where ||(s1,...,s4)]|2 = 20_, s>
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e Example of a kernel function on R?. Let ki, ..., kq be d univariate kernel
functions. Define

k(xy,...,2q) = ki(x1) - kq(zq) (7)

for (z1,...,74) € R%. Then k is a kernel function on R?. A kernel k of

the form in (7) is called a product kernel.
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