Constrained curve fitting based on splines

e Isotonic regression (# /5 ®5F). Consider the regression model:
Y; = f(Xi) + e,

i =1, ..., n. Suppose that f is a monotone function, and we ap-
proximate f using a spline function. Then we would like to solve the
constrained optimization problem:

i=1

n J
minimize Z:(YZ — Z aij(Xi))2 (1)
j=1

under the constraint that y
> aiB;
=1

is an increasing function, where Bi, ..., By are B-spline basis func-
tions.

e Fact 1 For a quadratic spline function f, = ijl a;Bj;, where a =
(ai,...,ay5) and By, ..., By are B-spline basis functions (in order),
fa 18 increasing if and only if {aj}le is increasing.

Example 1. Generate an increasing sequence {aj}jzl and plot the
graph of f, = 237:1 a;Bj, where By, ..., B are B-spline basis func-
tions on [0, 1]. Also, plot the graph of the derivative function of f, to
see if f; > 0.

— Plot f, with generated a:

require("splines")
m <- 3
knt4 <- c(1:4)/5
a <- sort(runif (7))
fa <- function(x){
bx <- bs(x, knots=knt4, Boundary.knots=c(0,1), deg=m-1, intercept=TRUE)
ans <- bx %*% a
return(ans[,1])
}

curve(fa, 0,1)



— Plot the derivative function. The derivative function of a B-spline
basis function can be computed using splineDesign.

dbs <- function(x, knotlist, bknots, m=4, der=0){
J <- m+length(knotlist)
n <- length(x)
knots.all <- c(rep(bknots[1], m), knotlist, rep(bknots[2], m))
dbx <- matrix(0, n, J)
for (j in 1:0){
k <- knots.all[j: (j+m)]
dbx[,j] <- splineDesign(k, x, ord=m, derivs=rep(der,n), outer.ok=TRUE)
}
return(dbx)
}

fla <- function(x){

bx <- dbs(x, knt4, c(0,1), m=m, der=1)
ans <- bx %% a

return(ans[,1])

}

curve(fla, 0,1)
#lines(c(0,1), c(0,0))

e Fitting the isotonic regression model based on quadratic spline ap-
proximation and reparametrization. To construct (aj,...,ay) so that
{a; }3-]:1 is strictly inreasing, we can take a sequence {b; }jzl and take

a1 =by and a; = a;_1 —i—b? for j > 2.

Then the constrained optimization problem in (1) can be reduced to
the unconstrained problem

n

minimize Z(YZ - Z a;(b) B;(X;))?

i=1 j=

—_

as a function of b = (by,...,by).

e Example 2.  Generate V; = f(X;) + ¢; with f(z) = (z — 0.5)% for
x € (—00,00) as follows:



set.seed (1)

n <- 1000

x <- seq(0, 1, length=n)

f <- function(x){ ans <- (x-0.5)"2; ans[x<0.5] <- 0; return(ans) }
y <= f(x)+rnorm(n, sd=0.05)

Approximate f using an increasing quadratic spline with 7 equally
spaced knots in (0,1) and find f: the least squared estimator of f.
Find the ISE.

Sol.

## define a function for parameter transform
b_to_a.fun <- function(b){

bl <- c(0, b[-11)

a <- b[1]+cumsum(b1~2)

return(a)

¥

## define a function to find the least square fit given the data
get.fit <- function(x,y, knotlist, deg=2, bknots =c(0,1)){
bx <- bs(x, knots=knotlist, deg=deg, Boundary.knots=bknots, intercept=TRUE)
#define rss as a function of parameter b
rss <- function(b){
a <- b_to_a.fun(b)
residual <- y - as.numeric(bx)*% a)
return( sum(residual~2) )
b
nb <- length(knotlist)+deg+1
b0 <- rep( mean(y), nb)
#b0 is an initial value of b
opt <- optim(b0, rss)
a.hat <- b_to_a.fun(opt$par)
#a.hat: vector of the estimated coefficients of B-spline basis functions
fhat <- function(u){
bu <- bs(u, knots=knotlist, deg=deg, Boundary.knots=bknots, intercept=TRUE)
ans <- bu %*% a.hat
return(ans[,1])
b
return(fhat)
b



#compute and plot fhat

fhat <- get.fit(x,y,(1:7)/8)
plot(x,y)

curve(fhat, 0, 1, add=TRUE, col=2)
curve(f, 0,1, add=TRUE, col=3)

#compute ISE
g <- function(x){ (fhat(x)-f(x))"2 }
integrate(g,0,1)$value

Fact 2 For a quadratic spline function f. = ijl c;jBj, where ¢ =
(c1,...,c5)T and By, ..., By are B-spline basis functions with knots
&1, ..., Ex and boundary knots a and b, f. is increasing if and only if

Fitting the isotonic regression model based on quadratic spline ap-
proximation using quadratic programming. According to Fact 2, the
constrained optimization problem in (1) can be simplied to

n J
minimize Z(Yg - Z:chj(XZ-))2
i=1 j=1

subject to
J

> ¢Bj(&) >0

j=1
for k =0,...,K 4+ 1, where §, = a and &x11 = b. The above con-
strained problem is a quadratic programming problem and can be
solved using the function solve.QP in the R package “quadprog”. To
see this, let B be the n x J matrix whose (7, j)-th element is B;(X;),
let Ag be the (K +2) x J matrix whose (4, j)-th element is B}(&-1)
and let ¢ be the J x 1 vector whose j-th element is c;, then the above
constrained problem is to find ¢ so that

—2y"Be+ ' BT Be

is minimized subject to Agc > 0, where y = (Y1,...,Y,)T isann x 1
vector.



e The function solve.QP is used for solving the problem of minimizing
(—d"b+0.5b" Db) with the constraints ATb > by. Let Dmat, dvec, Amat, bvec
denote D, d, A, by respectively, then

solve.QP(Dmat, dvec, Amat, bvec, meq=0)$solution

gives the vector b that minimizes (—d” b4-0.5b" Db) with the constraints
ATb > by. Setting meq=m means the first m constraints are equalities.

e Example 3. Generate V; = f(X;) +¢&; with f(z) = (z — 0.5)% for
x € (—o0,00) as follows:

set.seed(1)

n <- 1000

x <- seq(0, 1, length=n)

f <- function(x){ ans <- (x-0.5)"2; ans[x<0.5] <- 0; return(ans) }
y <= f(x)+rnorm(n, sd=0.05)

Approximate f using an increasing quadratic spline with 7 equally
spaced knots in (0,1) and find f: the least squared estimator of f
by formulating the optimization problem as a quadratic programming
problem. Find the ISE.

Sol. Let B be the n x J matrix whose (i, j)-th element is B;(X;)

get.fit <- function(x,y, knotlist, deg=2, bknots =c(0,1)){
B <- bs(x, knots=knotlist, deg=deg, Boundary.knots=bknots, intercept=TRUE)
Dmat <- t(B)%*% B
dvec <- as.numeric( y %*% B)
xi <- c(bknots[1], knotlist, bknots[2])
Amat <- t(dbs(xi, knotlist, bknots, m=deg+l, der=1))
bvec <- rep(0, length(xi))
a.hat <- solve.QP(Dmat, dvec, Amat, bvec)$solution
#a.hat: vector of the estimated coefficients of B-spline basis functions
fhat <- function(u){
bu <- bs(u, knots=knotlist, deg=deg, Boundary.knots=bknots, intercept=TRUE)
ans <- bu %*% a.hat
return(ans[,1])
}
return(fhat)
}



#compute and plot fhat

fhat <- get.fit(x,y,(1:7)/8)
plot(x,y)

curve(fhat, 0, 1, add=TRUE, col=2)
curve(f, 0,1, add=TRUE, col=3)

#compute ISE
g <- function(x){ (fhat(x)-f(x))"2 }
integrate(g,0,1)$value

Exercise 1. Generate Y; = f(X;) +¢&; with f(z) = e™"[(_o 0.5)() +
e 0210 5.00) () for € (—00,00) as follows:

set.seed (1)

n <- 1000

x <- seq(0, 1, length=n)

f <~ function(x){ ans <- exp(-x); ans[x>=0.5] <- exp(-0.5); return(ans) }
y <= f(x)+rnorm(n, sd=0.05)

Approximate f using an decreasing quadratic spline with 7 equally
spaced knots in (0,1) and find f: the least squared estimator of f
by formulating the optimization problem as a quadratic programming
problem. Find the ISE.

Exercise 2. Generate Y; = f(X;) 4 &; with f(z) = e */2/y/2r for
x € [-3, 3] as follows:

set.seed (1)

n <- 1000

x <- seq(-3, 3, length=n)

f <- function(x){ dnorm(x, O, 1) }
y <= f(x)+rnorm(n, sd=0.05)

Approximate f using a quadratic spline with 7 equally spaced knots
in (—3,3) that is increasing on [—3,0] and decreasing on [0, 3]. Find
f : the least squared estimator of f by formulating the optimization
problem as a quadratic programming problem. Find the ISE.



