
Goodness of fit tests involving nonparametric function estimation

• Regression. Suppose that we observe (Xi, Yi): 1 ≤ i ≤ n, where

Yi = f(Xi) + εi, (1)

and εi’s are IID errors with mean zero and variance σ2. Suppose that The
problem of interest is to test whether

H0 : f ∈ S0,

where S0 is a known collection of regression functions. For example, S0

can be the collection of linear functions. A reasonable test statistic for
testing H0 is

W =

∑n
i=1(Yi − f̂0(Xi))

2∑n
i=1(Yi − f̂(Xi))2

,

where f̂0 is an estimator of f under H0 and f̂ is an estimator of f . We
should reject H0 when W is large.

• Parametric estimation of f with normal error. Suppose that f = fθ for
some θ ∈ Θ, where Θ ⊂ Rd and Θ contains an open set in Rd. Suppose
that

S0 = {fθ : θ ∈ Θ0},

where Θ0 ⊂ Rd0 and Θ0 contains an open set in Rd0 . Suppose that θ̂0
and θ̂ are the least square estimator of θ under the constraints θ ∈ Θ0 and
θ ∈ Θ respectively, and f̂0 = fθ̂0 and f̂ = fθ̂. Suppose that εi ∼ N(0, σ2).
Then, under H0,

n log(W ) ≈ χ2(d− d0) for large n,

where χ2(d − d0) denotes the chi-square distribution with d − d0 degrees
of freedom. Thus we can reject H0 at level α if n log(W ) > q1−α, where
q1−α is the (1− α) quantile for χ2(d− d0). The p-value is the probability
that a χ2(d− d0) variable exceeds the observed n log(W ).

• We can also approximate the (1−α) quantile of the distribution of n log(W )
under H0 using bootstrap data. Let m be the number of bootstrap trials.

– Compute the residuals Yi − f̂(Xi): i = 1, . . ., n.

– For j = 1, . . ., m,

(i) sample from the residuals and obtain ε̂
(j)
1 , . . ., ε̂

(j)
n ,

(ii) compute Y
(j)
i = f̂0(Xi) + ε̂

(j)
i for i = 1, . . ., n,

(iii) compute n log(W ) based on Y
(j)
i : i = 1, . . ., n and Xi: i = 1,

. . ., n, and denote the n log(W ) value by n log(W (j)).

– We can then use the (1−α) quantile of n log(W (j)): j = 1, . . ., m to
approximate the (1−α) quantile of the distribution of n log(W ) under
H0. Then the approximate p-value is the proportion of n log(W (j))s
that exceed the observed n log(W ).
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• Example. Suppose that we have observations (Xi, Yi): 1 ≤ i ≤ n gener-
ated from (1). Approximate f(x) using

a0 +

5∑
k=1

(ak cos(2πkx) + bk sin(2πkx))

for x ∈ [0, 1], where the coefficients a0, a1, . . ., a5, b1, . . ., b5 are to be
estimated using least squared estimation. Consider the testing problem

H0 : f is a constant. (2)

Suppose that our test statistic is n log(W ). Suppose that data are gener-
ated as follows.

n <- 150

set.seed(1)

x <- runif(n)

y <- sin(2*x) + rnorm(n)

Find the p-value of our test for H0 in (2) using

(a) chi-square approximation of the distribution of n log(W ) under H0

and

(b) bootstrap.

Sol for (a).

w.fun <- function(x,y, resid=F){

n <- length(y)

Z <- matrix(0, n, 10)

for (k in 1:5){

Z[ ,k] <- cos(2*pi*k*x)

Z[ ,k+5] <- sin(2*pi*k*x)

}

Z <- cbind(rep(1,n), Z)

mean.y <- mean(y)

rss0 <- sum((y - mean.y)^2)

y.lm <- lm(y~Z-1)

rss <- sum(y.lm$resid^2)

w <- n*log(rss0/rss)

if (resid) { ans <- list(w, y.lm$resid); return(ans) } else { return(w) }

}

1-pchisq(w.fun(x,y), 10) #p-value 0.01920332

Sol for (b).

pv.fun <- function(x,y,m){

ans <- w.fun(x,y, resid=T)

w.obs <- ans[[1]]

resid <- ans[[2]]

n <- length(y)
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w <- rep(0, m)

mean.y <- mean(y)

for (j in 1:m){

e <- sample(resid, n)

ynew <- mean.y + e

w[j] <- w.fun(x,ynew)

}

return(length(w[w>w.obs])/m)

}

pv.fun(x,y,100) #p-value 0.02

• Note. The chi-square approximation of the distribution of n log(W ) under
H0 works well when n is large.

– Check the distribution of p-value under H0 when n = 150.

ans <- rep(0, 5000)

#ans2 <- ans

n <- 150

for (i in 1:5000){

set.seed(i)

x <- runif(n)

y <- rnorm(n)

ans[i] <- 1-pchisq(w.fun(x,y), 10)

#ans2[i] <- pv.fun(x,y,100)

}

hist(ans)

ks.test(ans, punif)$p.value #2.976472e-10;

#H0: ans is a random sample from U(0,1)

length(ans[ans<0.05])/length(ans) #0.0656

#ks.test(ans2, punif)$p.value #0.3667264

#length(ans2[ans2<0.05])/length(ans2) #0.05

– Repeat the above experiment with n replaced by 1500. Then we do
not have strong evidence to conclude that the distribution of p-value
based on chi-square approximation under H0 is not U(0, 1).

• Exercise 1. Suppose that we have observations (Xi, Yi): 1 ≤ i ≤ n
generated from (1). Approximate f using cubic B-spline basis functions
on [0, 1] with one knot at 0.5, where the coefficients for B-spline basis
functions are to be estimated using least squared estimation. Consider
the testing problem

H0 : f is a linear function. (3)

Suppose that our test statistic is n log(W ) and data are generated as
follows.

n <- 150

set.seed(1)

x <- runif(n)

y <- sin(2*x) + runif(n, -0.1, 0.1)*10
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Find the p-value of our test for H0 in (3) using

(a) chi-square approximation of the distribution of n log(W ) under H0

and

(b) bootstrap with 200 bootstrap trials.

• Exercise 2.

(a) Generate 500 data sets, where the i-th data set is generated as follows.

set.seed(i)

n <- 150

x <- runif(n)

y <- 1+x+runif(n, -0.1, 0.1)*5

For each of the 500 generated data sets, perform the test in Exercise
1 for testing (3), where the p-value is to be computed using chi-
square approximation of the distribution of n log(W ) under H0. Use
ks.test to determine whether there is a strong evidence that the
500 p-vlalues are not from the uniform distribution on (0, 1).

(b) Do Part (a) again with n <- 150 replaced by n <- 5000.

• Exercise 3. Suppose that we observe (Xi, Yi): 1 ≤ i ≤ n, and (1) holds,
where εi’s are IID errors with mean zero and variance σ2. Propose a test
for testing

H0 : f is an additive function,

and compute the p-values for the proposed test for the following data x,y

in (a) and (b):

(a) set.seed(1)

n <- 1000

x <- matrix(runif(n*2), n,2)

y <- 1+x[,1]+sin(3*x[,2])+rnorm(n, sd=0.1)

(b) set.seed(1)

n <- 1000

x <- matrix(runif(n*2), n,2)

y <- 1+x[,1]*sin(3*x[,2])+rnorm(n, sd=0.1)
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