Goodness of fit tests involving nonparametric function estimation
e Regression. Suppose that we observe (X;,Y;): 1 <i < n, where
Y = f(Xi) + e, (1)

and €;’s are IID errors with mean zero and variance o2. Suppose that The
problem of interest is to test whether

Hy: f €5,

where Sy is a known collection of regression functions. For example, Sy
can be the collection of linear functions. A reasonable test statistic for
testing Hy is
S (Vi — fo(X5))?
i (Y = f(X0))?

where fo is an estimator of f under Hy and f is an estimator of f. We
should reject Hy when W is large.

)

e Parametric estimation of f with normal error. Suppose that f = fy for
some 0 € O, where © C R? and © contains an open set in R%. Suppose
that

Soz{f«gtoe@()}a

where ©g C R% and ©g contains an open set in R%. Suppose that 0o
and 6 are the least square estimator of 6 under the constraints 6 € Oy and
6 € O respectively, and fo = fg, and f= f4- Suppose that ; ~ N (0, o?).
Then, under Hy,

nlog(W) =~ x*(d — dy) for large n,

where x?(d — dy) denotes the chi-square distribution with d — dy degrees
of freedom. Thus we can reject Hy at level « if nlog(W) > g1_n, where
q1_o is the (1 — a) quantile for x?(d — dp). The p-value is the probability
that a x?(d — dp) variable exceeds the observed nlog(W).

e We can also approximate the (1—a) quantile of the distribution of n log(W)
under Hy using bootstrap data. Let m be the number of bootstrap trials.

— Compute the residuals Y; — f(Xl) i=1,...,n.
—Forj=1,...,m,

(i) sample from the residuals and obtain égj), e égj),

(ii) compute Yi(j) = fo(X;) + égj) fori=1,...,n,
(iii) compute nlog(W) based on Yi(j): i=1,...,nand X;: i =1,
..., n, and denote the nlog(W) value by nlog(W ().
~ We can then use the (1 —a) quantile of nlog(W®@): j=1,...,mto
approximate the (1—a) quantile of the distribution of n log(W') under

Hy. Then the approximate p-value is the proportion of nlog(TW))s
that exceed the observed nlog(W).



e Example. Suppose that we have observations (X;,Y;): 1 < i < n gener-
ated from (1). Approximate f(z) using

5
ap + Z(ak cos(2mkx) + by sin(27wkx))
k=1

for z € [0,1], where the coefficients ag, a1, ..., as, b1, ..., bs are to be
estimated using least squared estimation. Consider the testing problem

Hy : f is a constant. (2)

Suppose that our test statistic is nlog(W). Suppose that data are gener-
ated as follows.

n <- 150

set.seed(1)

x <- runif(n)

y <= sin(2#x) + rnorm(n)

Find the p-value of our test for Hy in (2) using

(a) chi-square approximation of the distribution of nlog(W) under H
and

(b) bootstrap.
Sol for (a).

w.fun <- function(x,y, resid=F){
n <- length(y)
Z <- matrix(0, n, 10)
for (k in 1:5){
Z[ ,k] <- cos(2*pixk*x)
Z[ ,k+5] <- sin(2*pixk*x)
}
Z <- cbind(rep(1,n), Z)
mean.y <- mean(y)
rssO <- sum((y - mean.y) 2)
y.1m <- 1m(y~Z-1)
rss <- sum(y.lm$resid~2)
w <- n*xlog(rss0/rss)
if (resid) { ans <- list(w, y.lm$resid); return(ans) } else { return(w) }
}
1-pchisq(w.fun(x,y), 10) #p-value 0.01920332

Sol for (b).

pv.fun <- function(x,y,m){
ans <- w.fun(x,y, resid=T)
w.obs <- ans[[1]]

resid <- ans[[2]]

n <- length(y)



w <- rep(0, m)
mean.y <- mean(y)
for (j in 1:m){
e <- sample(resid, n)
ynew <- mean.y + e
wljl <= w.fun(x,ynew)
}
return(length(w[w>w.obs])/m)
}
pv.fun(x,y,100) #p-value 0.02

e Note. The chi-square approximation of the distribution of nlog(W) under
Hy works well when n is large.

— Check the distribution of p-value under Hy when n = 150.

ans <- rep(0, 5000)

#ans2 <- ans

n <- 150

for (i in 1:5000){

set.seed (i)

X <= runif(n)

y <- rnorm(n)

ans[i] <- 1-pchisq(w.fun(x,y), 10)

#ans2[i] <- pv.fun(x,y,100)

}

hist(ans)

ks.test(ans, punif)$p.value #2.976472e-10;
#HO: ans is a random sample from U(0,1)

length(ans[ans<0.05])/length(ans)  #0.0656

#ks.test(ans2, punif)$p.value #0.3667264
#length(ans2[ans2<0.05]) /length(ans2) #0.05

— Repeat the above experiment with n replaced by 1500. Then we do
not have strong evidence to conclude that the distribution of p-value
based on chi-square approximation under Hy is not U(0, 1).

e Exercise 1.  Suppose that we have observations (X;,Y;): 1 < i < n
generated from (1). Approximate f using cubic B-spline basis functions
on [0,1] with one knot at 0.5, where the coefficients for B-spline basis
functions are to be estimated using least squared estimation. Consider
the testing problem

Hy : f is a linear function. (3)

Suppose that our test statistic is nlog(WW) and data are generated as
follows.

n <- 150

set.seed(1)

x <- runif(n)

y <- sin(2*x) + runif(n, -0.1, 0.1)*10



Find the p-value of our test for Hy in (3) using

(a) chi-square approximation of the distribution of nlog(W) under Hj
and

(b) bootstrap with 200 bootstrap trials.
e Exercise 2.

(a) Generate 500 data sets, where the i-th data set is generated as follows.

set.seed (i)

n <- 150

x <- runif(n)

y <= 1l+x+runif(n, -0.1, 0.1)%5

For each of the 500 generated data sets, perform the test in Exercise
1 for testing (3), where the p-value is to be computed using chi-
square approximation of the distribution of nlog(W) under Hy. Use
ks.test to determine whether there is a strong evidence that the
500 p-vlalues are not from the uniform distribution on (0, 1).

(b) Do Part (a) again with n <- 150 replaced by n <- 5000.

e Exercise 3. Suppose that we observe (X;,Y;): 1 <4 < n, and (1) holds,
where ¢;’s are IID errors with mean zero and variance o2. Propose a test
for testing

Hy : f is an additive function,

and compute the p-values for the proposed test for the following data x,y
in (a) and (b):

(a) set.seed(1)

n <- 1000

x <- matrix(runif (n*2), n,2)

y <= 1+x[,1]+sin(3*x[,2])+rnorm(n, sd=0.1)
(b) set.seed(1)

n <- 1000

x <- matrix(runif (n*2), n,2)

y <= 1+x[,1]*sin(3*x[,2])+rnorm(n, sd=0.1)



