
Function approximation using basis functions

• Regression. Suppose that we observe (Xi, Yi): 1 ≤ i ≤ n, where

Yi = f(Xi) + εi,

and εi’s are IID errors with mean zero and variance σ2. The problem of
interest in regression is to estimate f based on (Xi, Yi)’s.

• Estimation approach. Choose a set of functions {Bj}Jj=1 so that f can

be approximated well using
∑J

j=1 ajBj . Then the coefficients aj ’s can be
estimated using least squares method. That is, ak’s are chosen so that

n∑
i=1

Yi − J∑
j=1

ajBj(Xi)

2

(1)

is minimized. Let â1, . . ., âJ be the solution to the minimization problem
in (1). Let

f̂ =

J∑
j=1

âjBj

Then f̂ is the estimator of f based on basis approximation and least square
estimation using basis functions B1, . . ., BJ .

• Some choices for the Bj ’s are

– Trigonometric basis functions.

– Polynomial basis functions.

– Spline basis functions.

• Given Yi: 1 ≤ i ≤ n and Zi,j : 1 ≤ i ≤ n and 1 ≤ j ≤ J , the vector (a1,
. . ., aJ)T that minimizes

n∑
i=1

Yi − J∑
j=1

ajZi,j

2

is given by (ZTZ)−1ZTY , where Z is the n×J matrix (Zi,j) and Y is the
n× 1 vector (Yi). Let â = (ZTZ)−1ZTY . â can be computed in R using
the lm function

lm(Y~Z-1)$coef

or using the solve function to compute (ZTZ)−1.

solve(t(Z) %*% Z) %*% t(Z) %*% Y

– We can also use ginv to compute the generalized inverse of ZTZ.
Theoretically, the generalized inverse of ZTZ is the same as (ZTZ)−1

when (ZTZ)−1 exists. However, ginv(t(Z) %*% Z)%*% t(Z) %*% Y

may differ from solve(t(Z) %*% Z)%*% t(Z) %*% Y due to compu-
tational error.
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• Example 1. Let f(x) = x sin(20x) for x ∈ [0, 1]. Suppose that n = 1000,
(X1, . . ., Xn) = seq(0, 1, length=n), and Yi = f(Xi) for i = 1, . . ., n.
Find the estimator of f based on best linear approximation using 11 basis
functions 1, cos(2πkx), sin(2πkx): k = 1, . . ., 5.

(a) Find (a0, a1, . . ., a5, b1, . . ., b5) that minimizes

n∑
i=1

(
Yi − a0 −

5∑
k=1

(ak cos(2πkXi) + bk sin(2πkXi))

)2

.

(b) Let (â0, â1, . . ., â5, b̂1, . . ., b̂5) be the solution to the above mini-
mization problem. Let

f̂(x) = â0 +

5∑
k=1

(âk cos(2πkx) + b̂k sin(2πkx)) for x ∈ [0, 1].

Then f̂ is the estimator of f based on best linear approximation using
11 basis functions 1, cos(2πkx), sin(2πkx): k = 1, . . ., 5. Plot f̂ on
[0, 1].

(c) Find the ISE
∫ 1

0
(f̂(x)− f(x))2dx.

#(a)

n <- 1000

x <- seq(0,1,length=n)

f <- function(x){ x*sin(20*x) }

y <- f(x)

m <- 5

Z <- matrix(0, n, 2*m)

for (k in 1:m){

Z[ ,k] <- cos(2*pi*k*x)

Z[ ,k+m] <- sin(2*pi*k*x)

}

Z <- cbind(rep(1,n), Z)

a1=(ginv(t(Z) %*% Z) %*% t(Z) %*% y)[,1] #estimated coefficients

a2=lm(y~Z-1)$coef #estimated coefficients

a1-a2

#(b)

fhat <- function(x){

m <- 5

n <- length(x)

Z <- matrix(0, n, 2*m)

for (k in 1:m){

Z[ ,k] <- cos(2*pi*k*x)

Z[ ,k+m] <- sin(2*pi*k*x)

}

Z <- cbind(rep(1,n), Z)

ans <- Z %*% a2

return(ans[,1])
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}

curve(fhat,0,1)

curve(f,0,1, add=T, col=2)

#(c)

g <- function(u){ return((fhat(u)-f(u))^2) }

integrate(g,0,1)$value #ISE 0.01065894

• Leave-one-out cross-validation. To choose the tuning parameter m, we
may use leave-one-out cross validation, i.e., m is choosen so that

RSSCV =

n∑
i=1

(
Yi − f̂−i(Xi)

)2
is minimized. Here n is the sample size and f̂−i denote the estimator of f
with the i-th pair (Yi, Xi) removed from the data.

It can be shown that RSSCV can be computed using the formula

RSSCV =

n∑
i=1

(Yi − f̂(Xi))
2

(1− hii)2
,

where f̂ is the estimator of f based on full data, hii is the i-th diagonal
element of the hat matrix Z(ZTZ)−1ZT and Z is the n×J matrix whose
j-th column is (Bj(X1), . . . , Bj(Xn))T for j = 1, . . ., J .

• Example 2. Compute the RSSCV for the data in Example 1.

n <- 1000

x <- seq(0,1,length=n)

f <- function(x){ x*sin(20*x) }

y <- f(x)

m <- 5

Z <- matrix(0, n, 2*m)

for (k in 1:m){

Z[ ,k] <- cos(2*pi*k*x)

Z[ ,k+m] <- sin(2*pi*k*x)

}

Z <- cbind(rep(1,n), Z)

mod <- lm(y~Z-1)

hii.v <- lm.influence(mod)$hat

rsscv <- sum( mod$resid^2/(1-hii.v)^2 )

• Exercise 1. Let f(x) = sin(20x) for x ∈ [0, 1]. Suppose that n = 1000,
(X1, . . ., Xn) = seq(0, 1, length=n), and Yi = f(Xi) for i = 1, . . .,

n. Let f̂ be the estimator of f based on best linear approximation using
basis functions 1, x, . . ., xm.

(a) Find the ISE of estimating f based on (X1, Y1), . . ., (Xn, Yn) by
approximating f using the best linear combination of 1, x, . . ., xm,
where m = 10.
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(b) Compute the ISE in Part (a) with m replaced by 11 and 12. Does
the ISE decrease as m increases?

• Exercise 2. In Exercise 1, replace Yi with f(Xi) + εi, where εi ∼ N(0, σ2)
with σ = 2. Compute the approximate IMSE based on 100 trials for
m = 10, 11,12. Does the IMSE decrease as m increases?

• Exercise 3. For the data in Example 1, computeRSSCV =
∑n

i=1

(
Yi − f̂−i(Xi)

)2
directly and compare it with the RSSCV value obtained in Example 2.
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