
Solutions to Homework Problems

1. We will show that
(∪∞

n=1An)
c
= ∩∞

n=1(A
c
n) (1)

by proving that
(∪∞

n=1An)
c ⊂ ∩∞

n=1(A
c
n) (2)

and
∩∞
n=1(A

c
n) ⊂ (∪∞

n=1An)
c
. (3)

We will first prove (2). Note that

x ∈ (∪∞
n=1An)

c

⇒ x ̸∈ ∪∞
n=1An

⇒ x ∈ Ac
n for each n ∈ {1, 2, . . .}

⇒ x ∈ ∩∞
n=1(A

c
n),

so (2) holds.

To prove (3), note that

x ∈ ∩∞
n=1(A

c
n)

⇒ x ∈ Ac
n for each n ∈ {1, 2, . . .}

⇒ x ̸∈ ∪∞
n=1An

⇒ x ∈ (∪∞
n=1An)

c
,

so (3) holds.

Since both (2) and (3) hold, we have (1).

2. Since σ(C) is a σ-field, σ(C) is closed under taking completement/countable
union/countable intersection. Therefore, we have the following results.

• The set {3} = A ∩B is in σ(C) since A and B are in σ(C).
• The set {3}c is in σ(C) since {3} is in σ(C).
• The set {1, 2} = A ∩ {3}c is in σ(C) since both A and {3}c are in
σ(C).

• The set {4, 5} = B ∩ {3}c is in σ(C) since both A and {3}c are in
σ(C).

Let C1 = {3}, C2 = {1, 2} and C3 = {4, 5}, then ∅, C1, C2, C3 are in
σ(C). σ(C) should also include sets of the form: D1 ∪D2 ∪D3, where Di

is ∅ or Ci for i = 1,2,3. Therefore, σ(C) should include the follwing sets:

• ∅ ∪ ∅ ∪ ∅ = ∅,
• C1 ∪ ∅ ∪ ∅ = {3},
• ∅ ∪ C2 ∪ ∅ = {1, 2},
• ∅ ∪ ∅ ∪ C3 = {4, 5},
• C1 ∪ C2 ∪ ∅ = {3, 1, 2},
• C1 ∪ ∅ ∪ C3 = {3, 4, 5},
• ∅ ∪ C2 ∪ C3 = {1, 2, 4, 5},
• C1 ∪ C2 ∪ C3 = {1, 2, 3, 4, 5} = Ω.
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Indeed, σ(C) is the collection of the above 8 sets.

3. (a) To find c, note that
∑

x:pX(x)>0 pX(x) = 1, so

1 = 0.2 + 0.4 +

∞∑
x=1

c · (0.5)x

= 0.6 +
0.5c

1− 0.5
,

which gives c = 1− 0.6 = 0.4.

(b)

P (X > 25) =

∞∑
x=26

pX(x)

=

∞∑
x=26

0.4 · (0.5)x

=
0.4 · (0.5)26

1− 0.5
= 0.8 · (0.5)26.

4. (a)

E(XY ) = 1 · 2 · P ((X,Y ) = (1, 2)) + 3 · 2 · P ((X,Y ) = (3, 2))

+3 · 6 · P ((X,Y ) = (3, 6)) + +3 · 7 · P ((X,Y ) = (3, 7))

= 2 · 0.5 + 6 · 0.1 + 18 · 0.3 + 21 · 0.1
= 9.1

(b) The possible values of XY are 1 · 2 = 2, 3 · 2 = 6, 3 · 6 = 18 and
3·7 = 21. Let pXY be the PMF ofXY , then pXY ({2}) = P ((X,Y ) =
(1, 2)) = 0.5, pXY ({6}) = P ((X,Y ) = (3, 2)) = 0.1, pXY ({18}) =
P ((X,Y ) = (3, 6)) = 0.3 and pXY ({21}) = P ((X,Y ) = (3, 7)) = 0.1.
Thus

E(XY ) = 2 · pXY ({2}) + 6 · pXY ({6}) + 18 · pXY ({18}) + 21 · pXY ({21})
= 2 · 0.5 + 6 · 0.1 + 18 · 0.3 + 21 · 0.1 = 9.1.
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5. (a)

E(X) =
∑

x:pX(x)>0

xpX(x)

=

∞∑
k=0

k
(
e−λλk/k!

)
=

∞∑
k=1

k
(
e−λλk/k!

)
=

∞∑
k=1

(
e−λλk/(k − 1)!

)
(m = k − 1) =

∞∑
m=0

(
e−λλm+1/m!

)
= λ

∞∑
m=0

(
e−λλm/m!

)
︸ ︷︷ ︸

=
∑

m:pX (m)>0 pX(m)=1

= λ.

E(X(X − 1)) =
∑

x:pX(x)>0

x(x− 1)pX(x)

=

∞∑
k=0

k(k − 1)
(
e−λλk/k!

)
=

∞∑
k=2

k(k − 1)
(
e−λλk/k!

)
=

∞∑
k=2

(
e−λλk/(k − 2)!

)
(m = k − 2) =

∞∑
m=0

(
e−λλm+2/m!

)
= λ2

∞∑
m=0

(
e−λλm/m!

)
︸ ︷︷ ︸

=
∑

m:pX (m)>0 pX(m)=1

= λ2.

(b) From Part (a), E(X2−X) = λ2 and E(X) = λ, so E(X2) = E(X2−
X) + E(X) = λ2 + λ, and

V ar(X) = E(X2)− (E(X))2 = λ2 + λ− λ2 = λ.

6. (a)

P (X > 0.6) =

∫ ∞

0.6

f0,1(x)dx

=

∫ 1

0.6

1dx= 0.4.
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(b)

E(X2) =

∫ ∞

−∞
x2f0,1(x)dx

=

∫ 1

0

x2dx = 1/3.

7. (a) Note that {5}, {1, 4}, {2} are disjoint and A = {1, 4} ∪ {2} ∪ {5};
B = {1, 4} ∪ {2};
C = {1, 4} ∪ {5},

so we can take D1, D2 and D3 so that {D1, D2, D3} is {{5}, {1, 4}
{2}}.

(b) By the additivity of P , we have P (A) = P ({1, 4}) + P ({2}) + P ({5});
P (B) = P ({1, 4}) + P ({2});
P (C) = P ({1, 4}) + P ({5}).

In the above equations, treat P (A), P (B) and P (C) as known and
solve for P ({5}), P ({1, 4}) and P ({2}), then we have P ({5}) = P (A)− P (B)

P ({1, 4}) = P (C)− P (A) + P (B)
P ({2}) = P (B)− P (C) + P (A)− P (B)

(4)

and

P ({3}) = 1− (P ({1, 4}) + P ({2}) + P ({5})) = P (A).

If
(P (A), P (B), P (C)) = (0.5, 0.3, 0.1), (5)

then (4) gives

P ({1, 4}) = P (C)− P (A) + P (B) = 0.1− 0.5 + 0.3 < 0,

which is impossible. Therefore, we cannot have (5).

8. To prove
lim

n→∞
P (An) = P (∩∞

n=1An) , (6)

note that {Ac
n}∞n=1 is an increasing sequence of events in F , so by con-

tinuity of P for the increasing case (Fact 1 given in the problem), we
have

lim
n→∞

P (Ac
n) = P (∪∞

n=1(A
c
n)) . (7)

Thus

lim
n→∞

P (An) = lim
n→∞

(1− P (Ac
n))

(7)
= 1− P (∪∞

n=1A
c
n)

= P ((∪∞
n=1A

c
n)

c
)

De Morgan’s law = P (∩∞
n=1(A

c
n)

c)

= P (∩∞
n=1An)

and (6) holds. Note that the last second equality follows from the result
of Problem 1, which is known as a part of the De Morgan’s laws.
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9. Let

An =

(
− 1

n
,
1

n

)
for n = 1,2, . . ., then {An}∞n=1 is a decreasing sequence and ∩∞

n=1An = {0}.
Therefore,

P ({0}) = lim
n→∞

P (An) = lim
n→∞

(
0.4 +

0.6

n

)
= 0.4.

10. Let
An = {X ≤ −an} = {ω ∈ Ω : X(ω) ∈ (−∞,−an]}

for n = 1, 2, . . ., then the sequence {An}∞n=1 is decreasing since {an}∞n=1

is increasing. By the continuity of P for the decreasing case (the result in
problem 8), we have

P (∩∞
n=1An) = lim

n→∞
P (An). (8)

Since P (An) = F (−an), (8) becomes

lim
n→∞

F (−an) = P (∩∞
n=1An). (9)

In addition, the set ∩∞
n=1An = ∅, so

P (∩∞
n=1An) = P (∅) = 0,

which, together with (9), gives

lim
n→∞

F (−an) = 0.

Note. You do not have to prove ∩∞
n=1An = ∅, but be sure you understand

why the result holds. The explanation is given below.

• To see that ∩∞
n=1An = ∅, note that if there exists ω ∈ ∩∞

n=1An, we
must have X(ω) ≤ −an for all n. Since limn→∞ −an = −∞, X(ω) =
−∞, which is impossible since X takes values in R. Therefore, there
is no point in ∩∞

n=1An. That is, ∩∞
n=1An = ∅.

11. We will show that Q is a probability function defined on F by verifying
the following:

(a) Q(A) ≥ 0 for all A ∈ F .

(b) Q(Ω) = 1.

(c) Suppose that {An}∞n=1 is a sequence of disjoint events in F , then

Q(∪∞
n=1An) =

∞∑
n=1

Q(An). (10)

• For (a), note that P is a probability function on F , so Q(A) =
P (A|B) = P (A ∩B)/P (B) ≥ 0 since P (B) > 0 and P (A ∩B) ≥ 0.

• For (b), Q(Ω) = P (Ω|B) = P (Ω ∩B)/P (B) = P (B)/P (B) = 1.
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• For (c), suppose that {An}∞n=1 is a sequence of disjoint events in F ,
then {An ∩B}∞n=1 is also a sequence of disjoint events in F , so

P (∪∞
n=1(An ∩B)) =

∞∑
n=1

P (An ∩B). (11)

Compute Q(∪∞
n=1An) using the definition of Q and we have

Q(∪∞
n=1An) = P (∪∞

n=1An|B)

= P (B ∩ (∪∞
n=1An))/P (B)

= P (∪∞
n=1(An ∩B))/P (B)

(11)
=

1

P (B)

( ∞∑
n=1

P (An ∩B)

)

=

∞∑
n=1

P (An ∩B)

P (B)

=

∞∑
n=1

P (An|B) =

∞∑
n=1

Q(An),

so (10) holds.

12. (a) F (0) = limx→0+ F (x) = limx→0+(0.5 + 0.5x) = 0.5.

(b) F (1) = limx→1+ F (x) = limx→1+ 1 = 1.

(c) From the definition of F , it is clear that F is continuous at every
point that is not in {0, 1}. Therefore, for a ∈ R, P (X = a) = 0 for
a ̸∈ {0, 1}. It remains to compute P (X = 0) and P (X = 1). Direct
calculation gives

P (X = 0) = F (0)− lim
x→0−

F (x)

= 0.5− lim
x→0−

0 = 0.5− 0 = 0.5,

and

P (X = 1) = F (1)− lim
x→1−

F (x)

= 1− lim
x→1−

(0.5 + 0.5x) = 1− 1 = 0.

(d)

P (0 ≤ X ≤ 1) = P (0 < X ≤ 1) + P (X = 0)

= F (1)− F (0) + 0.5

= 1− 0.5 + 0.5 = 1.

Here we have used the result that P (X = 0) = 0.5 (from Part (c)).

(e) From Part (c), we have that P (X = a) = 0 for a ̸= 0 and P (X =
0) = 0.5. If X is discrete, then 0 is the only possbile value of X and
we must have P (X = 0) = 1, which contradicts with the fact that
P (X = 0) = 0.5. Therefore, X is not discrete.
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13. Let SX = {x : fa,b(x) > 0} = (a, b), then

{(x− a)/(b− a) : x ∈ (a, b)} = (0, 1).

Solving y = (x− a)/(b− a) for x gives x = a+ (b− a)y. For y ̸∈ (0, 1), let
fY (y) = 0, and for y ∈ (0, 1), let

fY (y) = fa,b (a+ (b− a)y)

∣∣∣∣ ddy (a+ (b− a)y)

∣∣∣∣ ,
then fY is a PDF of (X − a)/(b− a). The expression of fY can be further
simplified: for y ∈ R,

fY (y) = I(0,1)(y) · fa,b (a+ (b− a)y)

∣∣∣∣ ddy (a+ (b− a)y)

∣∣∣∣
= I(0,1)(y) ·

1

b− a
· I(a,b)(a+ (b− a)y) · (b− a)

= I(0,1)(y) · I(a,b)(a+ (b− a)y)

= I(0,1)(y).

14. Let SX = {x : fX(x) > 0}, then SX = (0,∞) and

{
√
x : x ∈ (0,∞)} = (0,∞).

Solving y =
√
x for x gives x = y2. For y ∈ (0,∞), let

fY (y) = fX(y2)

∣∣∣∣ ddy (y2)
∣∣∣∣ ,

and for y ̸∈ (0,∞), let fY (y) = 0, then fY is a PDF of Y =
√
X. The

expression of fY can be further simplified:

fY (y) = I(0,∞)(y) · fX(y2)

∣∣∣∣ ddy (y2)
∣∣∣∣

= I(0,∞)(y) · 2y2e−(y2)2I(0,∞)(y
2) · |2y|

= I(0,∞)(y) · 4y3e−y4

for y ∈ R.

15. Let FY be the CDF of Y = X2. We will find FY first. For t < 0,
FY (t) = P (X2 ≤ t) = 0. For t = 0,

FY (0) = P (X2 ≤ 0) = P (X = 0) = 0

since X has a PDF. For t > 0,

FY (t) = P (X2 ≤ t)

= P (−
√
t ≤ X ≤

√
t)

=

∫ 0

−
√
t

(−x)dx+

∫ √
t

0

0.5e−xdx

(u = −x) =

∫ √
t

0

udu+

∫ √
t

0

0.5e−xdx

(y = u2; y = x2) =

∫ t

0

0.5dy +

∫ t

0

0.5e−
√
y

2
√
y

dy. (12)
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Take

f(y) =

(
1

2
+

1

4
√
y
e−

√
y

)
I(0,∞)(y) (13)

for y ∈ R, then for t > 0,∫ t

−∞
f(y)dy =

∫ t

0

(
1

2
+

e−
√
y

4
√
y

)
dy

(12)
= FY (t),

and for t ≤ 0, ∫ t

−∞
f(y)dy = 0 = FY (t).

We have verify that ∫ t

−∞
f(y)dy = FY (t)

for all t ∈ R, so the f given in (13) is a PDF of Y .

16. (a)

P (X > 2) = 1− P (X ≤ 2)

= 1− F (2) = 1− (1− e−4) = e−4.

(b) Note that

F ′(x) =
d

dx
(1− e−2x) = 2e−2x

for x > 0 and F ′(x) = 0 for x < 0. Let f(x) = 2e−2xI(0,∞)(x) for
x ∈ R. We will show that f is a PDF of X by verifying

F (t) =

∫ t

−∞
f(x)dx (14)

for t ∈ R. Note that for t ≤ 0,
∫ t

−∞ f(x)dx = 0 since f(x) = 0 for
x ≤ 0, and F (t) = 0 for t ≤ 0. Thus (14) holds clearly for t ≤ 0. For
t > 0, ∫ t

−∞
f(x)dx =

∫ t

0

(2e−2x)dx

=
(
−e−2x)

)∣∣t
x=0

= 1− e−2t = F (t),

so (14) holds for t > 0 as well. Since (14) holds for all t ∈ R, f is a
PDF of X.

17. (a) Let F be the CDF of X, then for t ∈ R,

F (t) = P (X ≤ t)

=

∫ t

−∞
2xe−x2

I(0,∞)(x)dx

= I(0,∞)(t) ·
∫ t

0

2xe−x2

dx

= I(0,∞)(t) · (1− e−t2).
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(b) For a ∈ (0, 1), solving F (t) = a for t gives e−t2 = 1 − a and t =√
− ln(1− a), so the median of the distribution of X is√

− ln(1− 0.5) =
√
ln(2),

and the IQR (interquartile range) of the distribution of X is√
− ln(1− 0.75)−

√
− ln(1− 0.25) =

√
ln(4)−

√
ln(4/3).

18. (a) Let F be the CDF of Y = g(X). It is clear that g(x) ≤ 0.5 for every
x ∈ R, so F (0.5) = P (g(X) ≤ 0.5) = 1 and F (t) = 1 for t ≥ 0.5. For
t < 0.5,

F (t) = P (Y ≤ t)

= P (g(X) ≤ t and X ≤ 0.5) + P (g(X) ≤ t and X > 0.5)

= P (X ≤ t and X ≤ 0.5) + P (0.5 ≤ t and X > 0.5)

= P (X ≤ t) + I[0.5,∞)(t)P (X > 0.5)

=

∫ t

−∞
e−x · I(0,∞)(x)dx

= I(0,∞)(t)

∫ t

0

e−xdx

(t<0.5)
= (1− e−t)I(0,0.5)(t).

From the above calculation, the CDF of Y is F , which is given by

F (t) = (1− e−t)I(0,0.5)(t) + I[0.5,∞)(t) (15)

for t ∈ R.

(b) Y cannot have a PDF since

P (Y = 0.5) = P (X ≥ 0.5) =

∫ ∞

0.5

e−xdx > 0.

(c) The CDF of Y is the F given in (15). From (15), F (t) = 1 > 1−e−0.5

for t ≥ 0.5 and for t < 0.5, F (t) = 1 − e−t < 1 − e−0.5. Therefore,
0.5 is the quantile of order (1− e−0.5) of the distribution of Y .

19. (a) Let µ = E(X), then by definition,

V ar(X) = E(X − µ)2

= E(X2 − 2µX + µ2)

= E(X2) + E(−2µX) + E(µ2)

= E(X2)− 2µE(X)︸ ︷︷ ︸
=µ

+µ2

= E(X2)− µ2

= E(X2)− (E(X))2.

(b) Let Y = X − E(X), then cX − E(cX) = cX − cE(X) = cY , so

V ar(cX) = E(cX − E(cX))2

= E
(
c2Y 2

)
= c2E(Y 2) = c2V ar(X).
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20. (b) Note that

E(X) =

∫ ∞

−∞
fX(x)dx

=

∫ −1

−∞
x

(
1

2x2

)
dx+

∫ ∞

1

x

(
1

2x2

)
dx,

where ∫ ∞

1

x

(
1

2x2

)
dx

= lim
b→∞

∫ b

1

1

2x
dx

= lim
b→∞

ln(b)

2
= ∞ (16)

and ∫ −1

−∞
x

(
1

2x2

)
dx

= lim
b→∞

∫ −1

−b

1

2x
dx

y=−x
= lim

b→∞
−
∫ b

1

1

2y
dy = −∞,

so E(X) cannot be defined.

(a)

E(X · I(0,∞)(X)) =

∫ ∞

−∞
x · I(0,∞)(x)fX(x)dx

=

∫ ∞

1

x

(
1

2x2

)
dx

(16)
= ∞,

so X · I(0,∞)(X) is not integrable.

21. We will first state and prove the result in Fact 1 to simplify limh→0+ P ((X,Y ) ∈
(x0, x0 + h)× (y0, y0 + h))/h2 and limh→0+ P ((U, V ) ∈ Rh)/h

2.

Fact 1 Suppose that f is a real-valued function that is continuous on an
open set O in R2 and (x0, y0) ∈ O. Suppose that {Ah : h > 0} is a
collection of regions in R2 such that for ε1 > 0, there exists δ1 > 0 such
that

h ∈ (0, δ1) ⇒ (x0, y0) ∈ Ah ⊂ B((x0, y0), ε1), (17)

where

B((x0, y0), ε1) = {(x, y) ∈ R2 : ∥(x, y)− (x0, y0)∥ < ε1},

then

lim
h→0+

∫
Ah

f(x, y)d(x, y)∫
Ah

1d(x, y)
= f(x0, y0). (18)
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Proof of Fact 1. Since f is continuous at (x0, y0), for ε2 > 0, there exists
δ2 > 0 such that

∥(x, y)− (x0, y0)∥ < δ2 ⇒ |f(x, y)− f(x0, y0)| < ε2/2. (19)

By assumption, there exists δ1 > 0 such that (17) holds with ε1 replaced
by δ2. Thus

h ∈ (0, δ1) ⇒ (x0, y0) ∈ Ah ⊂ B((x0, y0), δ2)

(19)⇒ |f(x, y)− f(x0, y0)| < ε2/2 (20)

⇒

∣∣∣∣∣
∫
Ah

f(x, y)d(x, y)∫
Ah

1d(x, y)
− f(x0, y0)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ah

f(x, y)− f(x0, y0)d(x, y)∫
Ah

1d(x, y)

∣∣∣∣∣
≤
∫
Ah

|f(x, y)− f(x0, y0)|d(x, y)∫
Ah

1d(x, y)

(20)

≤ ε2/2 < ε2.

In summary, we have shown that for ε2 > 0, there exists δ1 > 0 such that

h ∈ (0, δ1) ⇒

∣∣∣∣∣
∫
Ah

f(x, y)d(x, y)∫
Ah

1d(x, y)
− f(x0, y0)

∣∣∣∣∣ < ε2,

so (18) holds and the proof of Fact 1 is complete.

Next, we simplify limh→0+ P ((X,Y ) ∈ (x0, x0 + h) × (y0, y0 + h))/h2.
Apply Fact 1 with f = fX,Y , (x0, y0) = (x0, y0) and Ah = (x0, x0 + h) ×
(y0, y0 + h), we have

lim
h→0+

∫
(x0,x0+h)×(y0,y0+h)

fX,Y (x, y)d(x, y)∫
(x0,x0+h)×(y0,y0+h)

1d(x, y)
= fX,Y (x0, y0). (21)

Since

lim
h→0+

P ((X,Y ) ∈ (x0, x0 + h)× (y0, y0 + h))

h2

= lim
h→0+

∫
(x0,x0+h)×(y0,y0+h)

fX,Y (x, y)d(x, y)

h2

= lim
h→0+

∫
(x0,x0+h)×(y0,y0+h)

fX,Y (x, y)d(x, y)∫
(x0,x0+h)×(y0,y0+h)

1d(x, y)︸ ︷︷ ︸
=fX,Y (x0,y0) by (21)

· lim
h→0+

∫
(x0,x0+h)×(y0,y0+h)

1d(x, y)

h2︸ ︷︷ ︸
=1

,

we have

lim
h→0+

P ((X,Y ) ∈ (x0, x0 + h)× (y0, y0 + h))

h2
= fX,Y (x0, y0). (22)
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Next, we simplify limh→0+ P ((U, V ) ∈ Rh)/h
2. Apply Fact 1 with f =

fU,V , (x0, y0) = (u0, v0) and Ah = Rh, we have

lim
h→0+

∫
Rh

fU,V (u, v)d(u, v)∫
Rh

1d(x, y)
= fU,V (u0, v0). (23)

Since

lim
h→0+

P ((U, V ) ∈ Rh)

h2

= lim
h→0+

∫
Rh

fU,V (u, v)d(u, v)

h2

= lim
h→0+

∫
Rh

fU,V (u, v)d(u, v)∫
Rh

1d(u, v)︸ ︷︷ ︸
=fU,V (u0,v0) by (23)

· lim
h→0+

∫
Rh

1d(u, v)

h2

and ∫
Rh

1d(u, v)

= the area of the parallelogram ABCD

= ∥
−−→
AB∥ · ∥

−−→
AD∥ ·

√√√√1−

( −−→
AB ·

−−→
AD

∥
−−→
AB∥ · ∥

−−→
AD∥

)2

=

√
∥
−−→
AB∥2∥

−−→
AD∥2 − (

−−→
AB ·

−−→
AD)2,

where

−−→
AB = (u0 + ux(x0, y0)h, v0 + vx(x0, y0)h)− (u0, v0)

= h · (ux(x0, y0), vx(x0, y0)),

−−→
AD = (u0 + uy(x0, y0)h, v0 + vy(x0, y0)h)− (u0, v0)

= h · (uy(x0, y0), vy(x0, y0)),

and

∥
−−→
AB∥2∥

−−→
AD∥2 − (

−−→
AB ·

−−→
AD)2

= h2[(ux(x0, y0))
2 + (vx(x0, y0)

2)] · h2[(uy(x0, y0))
2 + (vy(x0, y0)

2)]

−[h2(ux(x0, y0)uy(x0, y0) + vx(x0, y0)vy(x0, y0))]
2

= h4|ux(x0, y0)vy(x0, y0)− vx(x0, y0)uy(x0, y0)|2,

we have

lim
h→0+

P ((U, V ) ∈ Rh

h2

= fU,V (u0, v0) lim
h→0+

∫
Rh

1d(u, v)

h2

= fU,V (u0, v0) lim
h→0+

√
h4|ux(x0, y0)vy(x0, y0)− vx(x0, y0)uy(x0, y0)|2

h2

= fU,V (u0, v0)|ux(x0, y0)vy(x0, y0)− vx(x0, y0)uy(x0, y0)|. (24)
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From (22), (24) and the result that

lim
h→0+

P ((X,Y ) ∈ (x0, x0 + h)× (y0, y0 + h))

h2
= lim

h→0+

P ((U, V ) ∈ Rh)

h2
,

we have

fX,Y (x0, y0) = fU,V (u0, v0)|ux(x0, y0)vy(x0, y0)− vx(x0, y0)uy(x0, y0)|.

Since
ux(x0, y0)vy(x0, y0)− vx(x0, y0)uy(x0, y0)

is the determinant of J(x0, y0), we have

fX,Y (x0, y0) = fU,V (u0, v0) · | determinant of J(x0, y0)| .

22.

E(Y ) = E

(
X − µ

σ

)
=

1

σ
E(X − µ)

=
1

σ
(E(X) + E(−µ)) =

1

σ
(µ+ (−µ)) = 0.

V ar(Y ) = V ar

(
X − µ

σ

)
=

1

σ2
V ar(X − µ)

=
V ar(X)

σ2
=

σ2

σ2
= 1.

23. Note that for a positive integer k,

dk

dtk
e2t = 2k · e2t

and
dk

dtk
0.6 = 0,

so for k ∈ {1, 2, 3, 4},

dk

dtk
MX(t) = 0.4 · 2k · e2t

and

E(Xk) =
dk

dtk
MX(t)

∣∣∣∣
t=0

= 0.4 · 2k, (25)

which gives E(X) = 0.8, E(X2) = 1.6, E(X3) = 3.2, and E(X4) = 6.4.

Below is another approach for finding

dk

dtk
MX(t)

∣∣∣∣
t=0

.
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Apply the result that

ex =

∞∑
k=0

xk

k!

for x ∈ R, we have

MX(t) = 0.6 + 0.4

(
1 +

∞∑
k=1

(2t)k

k!

)
for t ∈ R. Therefore, for k ≥ 1,

dk

dtk
MX(t)

∣∣∣∣
t=0

= k! · 0.4 · 2
k

k!
= 0.4 · 2k,

so (25) still holds and the E(Xk) values remain the same as those com-
puted above.

24. Let MY be the MGF of Y , then

MY (t) = E(etY )

= et·0P (Y = 0) + et·2P (Y = 2)

= 1 · 0.6 + e2t · 0.4 = MX(t)

for t ∈ (−∞,∞), where MX is the MGF of the random variable X in
Problem 23. Since Y and X have the same MGF, they have the same
distribution.

25. (a) The random variableX’s distribution is the Poisson distribution with
mean λ, so X has PMF pX , where

pX(k) =

{
e−λλk/k! if k ∈ {0, 1, 2, . . .};
0 otherwise.

Let MX be the MGF of X, then

MX(t) = E(etX)

=

∞∑
k=0

etke−λ · λ
k

k!

= e−λ
∞∑
k=0

(λet)k

k!

= e−λeλe
t

= eλ(e
t−1)

for t ∈ (−∞,∞).

(b) From Part (a), MX(t) = eλ(e
t−1) for t ∈ (−∞,∞). Since

d

dt
MX(t) =

d

dt
eλ(e

t−1) = eλ(e
t−1) d

dt
λ(et − 1) = λetMX(t)

and

d2

dt2
MX(t) =

d

dt
λetMX(t)

= MX(t)
d

dt
(λet) + (λet)

d

dt
MX(t)

= (λet)(MX(t) +M ′
X(t))

14



for t ∈ (−∞,∞), we have

E(X) = M ′
X(0) = λe0MX(0) = λ

and

E(X2) = M ′′
X(0) = (λe0)(MX(0) +M ′

X(0)) = λ(1 + λ).

Therefore,

V ar(X) = E(X2)− (E(X))2 = λ(1 + λ)− λ2 = λ.

26.

MY (t) = E(et(a+bX))

= E(eta · etbX)

= etaE(etbX)

= etaMX(tb)

for |tb| < h. If b ̸= 0, then |tb| < h ⇔ t ∈ (−h/|b|, h/|b|). Thus if b ̸= 0,

MY (t) = etaMX(tb) < ∞

for t ∈ (−h/|b|, h/|b|).

27. (a) For t ∈ R,

MZ(t) = E(etZ)

=

∫ ∞

−∞
etzf0,1(z)dz

=

∫ ∞

−∞
etz

1√
2π

e−z2/2dz

=

∫ ∞

−∞

1√
2π

e−(z−t)2/2 · et
2/2dz

= e0.5t
2

∫ ∞

−∞
ft,1(z)dz.

Since ft,1 is a PDF, the integral
∫∞
−∞ ft,1(z)dz = 1 and we have

MZ(t) =

∫ ∞

−∞
etzf0,1(z)dz = e0.5t

2

(26)

for t ∈ R.

(b) Note that

MZ(t) = e0.5t
2

=

∞∑
k=0

(0.5t2)k

k!

for t ∈ R, so

E(Z6) = M
(6)
Z (0) = 6!

(0.5)3

3!
= 15.
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(c) We will show that Y and Z have the same distribution by verifying
that they have the same MGF. Let MY be the MGF of Y , then

MY (t) = E(etY )

= E(et(X−µ)/σ)

=

∫ ∞

−∞
et(x−µ)/σ 1√

2πσ2
e−(x−µ)2/(2σ2)dx

z=(x−µ)/σ
=

∫ ∞

−∞
etz

1√
2πσ2

e−z2/2 · σdz

=

∫ ∞

−∞
etz

1√
2π

e−z2/2︸ ︷︷ ︸
=f0.1(z)

dz

(26)
= e0.5t

2

= MZ(t)

for t ∈ R. Since Y and Z have the same MGF, Y and Z have the
same distribution.

(d) Since Y = (X − µ)/σ, we have X = µ + σY . Let MX be the MGF
of X, then

MX(t) = E(etX)

= E(et(µ+σY ))

Problem 26
= etµMY (tσ)

Part (a)
= etµe0.5(tσ)

2

= eµt+0.5σ2t2

for t ∈ R.

To compute E(X) and V ar(X), note that

M ′
X(t) =

d

dt
eµt+0.5σ2t2

= eµt+0.5σ2t2︸ ︷︷ ︸
=MX(t)

· d
dt

(µt+ 0.5σ2t2)

= MX(t)(µ+ σ2t)

and

M ′′
X(t) =

d

dt

(
MX(t)(µ+ σ2t)

)
= M ′

X(t)(µ+ σ2t) +MX(t) · σ2,

so
E(X) = M ′

X(0) = MX(0)︸ ︷︷ ︸
=1

· (µ+ σ2t)
∣∣
t=0

µ = µ (27)

and

E(X2) = M ′′
X(0) = M ′

X(0)︸ ︷︷ ︸
(27)
= µ

· (µ+ σ2t)
∣∣
t=0

+MX(0)︸ ︷︷ ︸
=1

·σ2 = µ2 + σ2,

which gives

V ar(X) = E(X2)− [E(X)]2 = µ2 + σ2 − µ2 = σ2.
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28. (a) Let H(x) = (1− e−x)I[0,∞)(x), then

FX,Y (x, y) = 0.5G(x)G(y) + 0.5H(x)H(y)

for (x, y) ∈ R2 and

P (0 < X ≤ 1 and 1 < Y ≤ 2)

= FX,Y (1, 2)− FX,Y (0, 2)− FX,Y (1, 1) + FX,Y (0, 1)

= 0.5G(1)G(2) + 0.5H(1)H(2)− [0.5G(0)G(2) + 0.5H(0)H(2)]

−[0.5G(1)G(1) + 0.5H(1)H(1)] + 0.5G(0)G(1) + 0.5H(0)H(1)

= 0.5(G(2)−G(1))(G(1)−G(0)) + 0.5(H(2)−H(1))(H(1)−H(0))

= 0.5(1− 1)(1− 0) + 0.5(1− e−2 − (1− e−1))(1− e−1 − (1− 1))

= 0.5e−1 − e−2 + 0.5e−3.

(b) Let FX be the CDF of X, then

FX(x) = lim
y→∞

FX,Y (x, y)

= lim
y→∞

(0.5G(x)G(y) + 0.5H(x)H(y))

for x ∈ R. Since

lim
y→∞

G(y) = lim
x→∞

(xI(0,1)(x) + I[1,∞)(x)) = 1

and
lim
y→∞

H(y) = lim
x→∞

(1− e−x)I[0,∞)(x) = 1,

we have

FX(x) = lim
y→∞

(0.5G(x)G(y) + 0.5H(x)H(y))

= 0.5G(x) + 0.5H(x)

= 0.5(xI(0,1)(x) + I[1,∞)(x)) + 0.5(1− e−x)I[0,∞)(x)

= (0.5x+ 0.5− 0.5e−x))I(0,1)(x) + (1− 0.5e−x)I[1,∞)(x)

for x ∈ R.

29. Since

P ((X,Y, Z) ∈ (a, b]× (c, d]× (e, f ])

= P ((X,Y ) ∈ (a, b]× (c, d] and Z ≤ f)

−P ((X,Y ) ∈ (a, b]× (c, d] and Z ≤ e) (28)

We will first express P ((X,Y ) ∈ (a, b] × (c, d] and Z ≤ z) using the joint
CDF of (X,Y, Z). Note that for z ∈ (−∞,∞),

P ((X,Y ) ∈ (a, b]× (c, d] and Z ≤ z)

= P (X ∈ (a, b] and Y ≤ d and Z ≤ z)

−P (X ∈ (a, b] and Y ≤ c and Z ≤ z) (29)

and for y ∈ {c, d},

P (X ∈ (a, b] and Y ≤ y and Z ≤ z)

= P (X ≤ b and Y ≤ y and Z ≤ z)

−P (X ≤ a and Y ≤ y and Z ≤ z)

= F (b, y, z)− F (a, y, z),
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so (29) becomes

P ((X,Y ) ∈ (a, b]× (c, d] and Z ≤ z)

= F (b, d, z)− F (b, c, z)− (F (a, d, z)− F (a, c, z)) (30)

for z ∈ (−∞,∞). In (28), replace each probability of the form P ((X,Y ) ∈
(a, b]× (c, d] and Z ≤ z) (z = e, f) with the CDF expression in (30), then
we have

P ((X,Y, Z) ∈ (a, b]× (c, d]× (e, f ])

= F (b, d, f)− F (b, c, f)− (F (a, d, f)− F (a, c, f))

−(F (b, d, e)− F (b, c, e)− (F (a, d, e)− F (a, c, e)))

= F (b, d, f)− F (b, c, f)− F (a, d, f) + F (a, c, f)

−F (b, d, e) + F (b, c, e) + F (a, d, e)− F (a, c, e).

30. (a)

1 =

∫
R2

fX,Y (x, y)d(x, y)

=

∫ 1

0

∫ 1

0

cxdydx

=

∫ 1

0

cx

∫ 1

0

1dydx

=

∫ 1

0

cxdx = c/2,

so c = 2.

(b)

P ((X + 2Y ) ≤ 1) =

∫
{(x,y):x+2y≤1}

fX,Y (x, y)d(x, y)

=

∫
{(x,y):x+2y≤1}∩(0,1)×(0,1)

2xd(x, y)

=

∫ 1/2

0

∫ (1−2y)

0

2xdxdy

=

∫ 1/2

0

(1− 2y)2dy =
1

6
.

(c) Let

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

for y ∈ (−∞,∞), then fY is a PDF of Y . Note that for y ∈ R and
y ̸∈ (0, 1), fX,Y (x, y) = 0, so∫ ∞

−∞
fX,Y (x, y)dx = 0

for y ̸∈ (0, 1). In addition, for y ∈ (0, 1),∫ ∞

−∞
fX,Y (x, y)dx =

∫ 1

0

2xdx = 1.
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Therefore,

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx = I(0,1)(y)

for y ∈ R.

31. Let

c1 =

∫ ∞

−∞
g(x)dx and c2 =

∫ ∞

−∞
h(x)dx,

then

1 =

∫
R2

fX,Y (x, y)d(x, y) =

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)dxdy = c1c2. (31)

Let

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy =

∫ ∞

−∞
g(x)h(y)dy = c2g(x)

for x ∈ R and

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx =

∫ ∞

−∞
g(x)h(y)dx = c1h(y)

for y ∈ R, then fX and fY are PDF’s of X and Y , respectly, and

fX(x)fY (y) = c2g(x)c1h(y)
(31)
= g(x)h(y) = fX,Y (x, y)

for (x, y) ∈ R2.

32. Let
An = {w ∈ Ω : X(w) ≤ x and Y (w) ≤ n}

for n ≥ 1, then it is clear that

An ⊂ An+1 for all n ≥ 1 (32)

and it can be shown that

∪∞
n=1An = {w ∈ Ω : X(w) ≤ x}, (33)

so

lim
y→∞

P (X ≤ x and Y ≤ y) = lim
n→∞

P (X ≤ x and Y ≤ n)

= lim
n→∞

P (An)

(32)
= P (∪∞

n=1An)

(33)
= P ({w ∈ Ω : X(w) ≤ x}) = P (X ≤ x).

Below we will prove (33). Note that it is clear that

∪∞
n=1An ⊂ {w ∈ Ω : X(w) ≤ x} (34)

since for every n ≥ 1,

An = {w ∈ Ω : X(w) ≤ x} ∩ {w ∈ Ω : Y (w) ≤ n} ⊂ {w ∈ Ω : X(w) ≤ x}.
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Therefore, to verify (33), it remains to show that

{w ∈ Ω : X(w) ≤ x} ⊂ ∪∞
n=1An. (35)

To see that (35) holds, note that for w ∈ {w ∈ Ω : X(w) ≤ x}, there must
exist a positive integer m such that

Y (w) ≤ m,

otherwise we cannot have Y (w) ∈ R. Thus

w ∈ {w ∈ Ω : X(w) ≤ x}
⇒ w ∈ Ω, X(w) ≤ x and Y (w) ≤ m for some positive integer m

⇒ w ∈ Am for some positive integer m

⇒ w ∈ ∪∞
n=1An.

Therefore, we have verified (35). Since both (34) and (35) hold, we have

{w ∈ Ω : X(w) ≤ x} = ∪∞
n=1An

and (33) holds.

33. (a) The set {(x, y) : fX,Y (x, y) > 0} is (0,∞)× (0,∞). Let

SU,V = {(
√
x2 + y2, tan−1(y/x)) : (x, y) ∈ (0,∞)× (0,∞)}.

We will first show that

SU,V = (0,∞)× (0, π/2) (36)

by verifying that
SU,V ⊂ (0,∞)× (0, π/2) (37)

and
(0,∞)× (0, π/2) ⊂ SU,V . (38)

To verify (37), suppose that (u, v) ∈ SU,V . Then by the definition of
SU,V , there exists (x, y) ∈ (0,∞)× (0,∞) such that{

u =
√
x2 + y2;

v = tan−1(y/x).
(39)

Since (39) holds and (x, y) ∈ (0,∞)×(0,∞), we have u =
√
x2 + y2 >

0 and v = tan−1(y/x) ∈ (0, π/2), so (u, v) ∈ (0,∞) × (0, π/2). The
verification of (37) is complete.

To verify (38), suppose that (u, v) ∈ (0,∞)× (0, π/2). In such case,
solving (39) for (x, y) ∈ (0,∞)× (0,∞) gives{

x = u cos(v);
y = u sin(v).

(40)

Since (u, v) ∈ (0,∞) × (0, π/2), the (x, y) in (40) satisfies (x, y) ∈
(0,∞) × (0,∞) and (39) holds for the (x, y) in (40). Therefore,
(u, v) ∈ SU,V . The verification of (38) is complete.

From (37) and (38), we have (36).
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For (u, v) ∈ (0,∞) × (0, π/2), let J(u, v) be the determinant of the
Jacobian matrix of x and y as functions of (u, v) given in (40), then

J(u, v) = determinant of

(
∂
∂uu cos(v)

∂
∂vu cos(v)

∂
∂uu sin(v)

∂
∂vu sin(v)

)
= determinant of

(
cos(v) −u sin(v)
sin(v) u cos(v)

)
= u cos2(v)− (−u sin2(v)) = u.

For (u, v) ∈ R2, let

fU,V (u, v) =

{
fX,Y (u cos(v), u sin(v))|J(u, v)| if (u, v) ∈ SU,V ;
0 otherwise,

=

{
fX,Y (u cos(v), u sin(v))|u| if (u, v) ∈ (0,∞)× (0, π/2);
0 otherwise,

then fU,V is a PDF of (U, V ). Note that

(u, v)(0,∞)× (0, π/2)

⇒ (u cos(v), u sin(v)) ∈ (0,∞)× (0,∞)

⇒ fX,Y (u cos(v), u sin(v))|u|

= ce−((u cos(v))2+(u sin(v))2)/2u

= ce−u2/2u,

so the expression of fU,V can be simplified as follows:

fU,V (u, v) =

{
ce−u2/2u if (u, v) ∈ (0,∞)× (0, π/2);
0 otherwise.

(b) For v ∈ (−∞,∞), let

fV (v) =

∫ ∞

−∞
fU,V (u, v)du

=

{ ∫∞
0

ce−u2/2udu = c if v ∈ (0, π/2);
0 otherwise,

= cI(0,π/2)(v)

then fV is a PDF of V .

(c) Since 1 =
∫∞
−∞ fV (v)dv =

∫ π/2

0
cdv = cπ/2, we have c = 2/π.

34. (a) Let MX,Y be the joint MGF of (X,Y ), then for s < 1, t < 1,

MX,Y (s, t) = E(esX+tY )

=

∫
R2

esx+tyfX,Y (x, y)d(x, y)

=

∫
(0,∞)×(0,∞)

esx+ty

(
1

Γ(α)Γ(β)
xα−1yβ−1e−x−y

)
d(x, y)

=
1

Γ(α)Γ(β)

∫ ∞

0

∫ ∞

0

e−(1−s)xxα−1e−(1−t)yyβ−1dxdy.

21



Note that for t0 < 1 and a > 0,∫ ∞

0

e−(1−t0)xxa−1dx

( let z = (1− t0)x) =

∫ ∞

0

e−z

(
z

1− t0

)a−1
1

1− t0
dz

= (1− t0)
−a

∫ ∞

0

e−zza−1dz = (1− t0)
−aΓ(a).

Apply the above reslut with (a, t0) = (α, s), (β, t), then we have∫ ∞

0

e−(1−s)xxα−1dx = (1− s)−αΓ(α) for s < 1

and ∫ ∞

0

e−(1−t)yyβ−1dy = (1− t)−βΓ(β) for t < 1.

Thus the expression of MX,Y (s, t) can be simplified as follows: for
s < 1, t < 1,

MX,Y (s, t) =
1

Γ(α)Γ(β)

∫ ∞

0

∫ ∞

0

e−(1−s)xxα−1e−(1−t)yyβ−1dxdy

=
1

Γ(α)Γ(β)

∫ ∞

0

e−(1−t)yyβ−1(1− s)−αΓ(α)dy

=
1

Γ(β)
(1− s)−α

∫ ∞

0

e−(1−t)yyβ−1dy

=
1

Γ(β)
(1− t)−α(1− t)−βΓ(β)

= (1− s)−α(1− t)−β .

It is clear that the function M given in the problem is the same as
MX,Y , which is the MGF of (X,Y ).

(b) Let MX be the MGF of X, then MX(s) = MX,Y (s, 0) = (1 − s)−α

for s < 1.

(c) To find E(XY ), we will first compute
∂2

∂t∂s
MX,Y (s, t) since

E(XY ) =
∂2

∂s∂t
MX,Y (s, t)

∣∣∣∣
(s,t)=(0,0)

.

Note that

∂

∂s
MX,Y (s, t) =

∂

∂s
(1− s)−α(1− t)−β

= (1− t)−β d

ds
(1− s)−α

= (1− t)−βα(1− s)−α−1,

so

∂2

∂t∂s
MX,Y (s, t) =

∂

∂t
(1− t)−βα(1− s)−α−1

= α(1− s)−α−1 d

dt
(1− t)−β

= α(1− s)−α−1β(1− t)−β−1.
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Therefore,

E(XY ) = α(1− s)−α−1β(1− t)−β−1
∣∣
(s,t)=(0,0)

= αβ

and

E(X) =
∂

∂s
MX,Y (s, t)

∣∣∣∣
(s,t)=(0,0)

= (1− t)−βα(1− s)−α−1
∣∣
(s,t)=(0,0)

= α.

Remark. To find E(X), we can also compute M ′
X : the derivative of

the MGF of X. From the solution to Part (b), we have MX(s) =
(1− s)−α, so

M ′
X(s) =

d

ds
(1− s)−α = α(1− s)−α−1

and E(X) = M ′
X(0) = α.

35. From the solution to Problem 34 (a), the joint MGF of (X,Y ) is MX,Y ,
where

MX,Y (s, t) = (1− s)−α(1− t)−β for s < 1, t < 1. (41)

For a > 0, let Ma be the MGF of a random variable whose distribution is
Γ(a, 1), then from the solution to Problem 34 (b), we have for every a > 0,

Ma(t) = (1− t)−a for t < 1. (42)

Let MX+Y be the MGF of X + Y , then for t < 1,

MX+Y (t) = E(et(X+Y ))

= MX,Y (t, t)

(41)
= (1− t)−α(1− t)−β

= (1− t)−(α+β).

Since MX+Y is the same as the MGF Ma in (42) with a = α + β on
(−∞, 1), the distribution of (X + Y ) is Γ(α+ β, 1).

36. (a) Let A = {(x, y) : (x+ 2y) > 0}, then

P ((X + 2Y ) > 0) =

∫
A

fX,Y (x, y)d(x, y)

=

∫
A∩S

cd(x, y)

=

∫
{(x,y):0<(x+2y)<2 and −2<(x−2y)<2}

cd(x, y)

u=x+2y,v=x−2y
=

∫
(0,2)×(−2,2)

c|J(u, v)|d(u, v),

where

J(u, v) = deteminant of

(
∂
∂u

u+v
2

∂
∂v

u+v
2

∂
∂u

u−v
4

∂
∂v

u−v
4

)
= deteminant of

(
1
2

1
2

1
4 − 1

4

)
=

1

2

(
−1

4

)
− 1

2
· 1
4

= −1

4
, (43)
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so

P ((X + 2Y ) > 0) =

∫
(0,2)×(−2,2)

c

4
d(u, v)

=

∫ 2

0

∫ 2

−2

c

4
dvdu

= 2c.

(b) Since

1 =

∫
R2

fX,Y (x, y)d(x, y) =

∫
cIS(x, y)d(x, y),

we have

1

c
=

∫
S

1d(x, y)

=

∫
{(x,y):−2<(x+2y)<2 and −2<(x−2y)<2}

1d(x, y)

u=x+2y,v=x−2y
=

∫
(−2,2)×(−2,2)

|J(u, v)|d(u, v)

(43)
=

∫
(−2,2)×(−2,2)

1

4
d(u, v)

=

∫ 2

−2

∫ 2

−2

1

4
dvdu = 4,

so c = 1/4.

37. (a) To find E(X|Y ), we will first find a version of the conditional PDF
of X given Y . For y ∈ (−∞,∞), let

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx,

RY = {y : fY (y) > 0}, and

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
(44)

for y ∈ RY , then {fX|Y=y : y ∈ RY } is a version of the conditional
PDF of X given Y .

To compute fY , note that the region S is the interior of the parrallelo-
gram with vertices (−2, 0), (0, 1), (2, 0) and (0,−1), so for (x, y) ∈ S,
we have y ∈ (−1, 1) and fY (y) = 0 for y ̸∈ (−1, 1). In addition, given
y ∈ (−1, 1),

(x, y) ∈ S

⇔ x ∈
{

(−2− 2y, 2 + 2y) if − 1 < y ≤ 0;
(−2 + 2y, 2− 2y) if 0 < y < 1,

(45)

so

fY (y) =


0 if y ≥ 1 or y ≤ −1;∫ 2+2y

−2−2y
cdx = 4c(1 + y) if − 1 < y ≤ 0;∫ 2−2y

−2+2y
cdx = 4c(1− y) if 0 < y < 1.

(46)
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From (46), it is clear that RY = {y : fY (y) > 0} = (−1, 1).

Next, we compute fX|Y=y using (44) for y ∈ (−1, 1). From (45) and
(46), we have that for y ∈ (−1, 0],

fX|Y=y(x) =

{ c
4c(1+y) =

1
4(1+y) if x ∈ (−2− 2y, 2 + 2y);

0 otherwise,

and for y ∈ (0, 1),

fX|Y=y(x) =

{ c
4c(1−y) =

1
4(1−y) if x ∈ (−2 + 2y, 2− 2y);

0 otherwise.

Therefore, for y ∈ (−1, 1),

E(X|Y = y) =

∫ ∞

−∞
xfX|Y=y(x)dx

=

{ ∫ 2+2y

−2−2y
x

4(1+y)dx = 0 if − 1 < y ≤ 0;∫ 2−2y

−2+2y
x

4(1−y)dx = 0 if 0 < y < 1,

= 0,

which implies that E(X|Y ) = 0.

(b) For y ∈ (−1, 1),

V ar(X|Y = y) = E(X2|Y = y)− (E(X|Y = y))2

= E(X2|Y = y)− 02

=

∫ ∞

−∞
x2fX|Y=y(x)dx

=

{ ∫ 2+2y

−2−2y
x2

4(1+y)dx = 4(1+y)2

3 if − 1 < y ≤ 0;∫ 2−2y

−2+2y
x2

4(1−y)dx = 4(1−y)2

3 if 0 < y < 1;

so

V ar(X|Y ) =

{
4(1 + Y )2/3 if − 1 < Y ≤ 0;
4(1− Y )2/3 if 0 < Y < 1.

38. (a) We first compute the conditional probabilities P (X = x|Y = −3) to
find E(X|Y = −3) and V ar(X|Y = −3). Since

P (Y = −3) = P ((X,Y ) = (0,−3)) + P ((X,Y ) = (1,−3))

= 0.4 + 0.1 = 0.5,

P (X = 0|Y = −3) =
P ((X,Y ) = (0,−3))

P (Y = −3)
=

0.4

0.5
= 0.8,

and

P (X = 1|Y = −3) =
P ((X,Y ) = (1,−3))

P (Y = −3)
=

0.1

0.5
= 0.2,

we have

E(X|Y = −3) = 0×P (X = 0|Y = −3)+1×P (X = 1|Y = −3) = 0·0.8+1·0.2 = 0.2
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and

V ar(X|Y = −3) = E(X2|Y = −3)− (E(X|Y = −3))2

= 02 × P (X = 0|Y = −3) + 12 × P (X = 1|Y = −3)− (0.2)2

= 0 · 0.8 + 1 · 0.2− 0.04 = 0.16.

Next, we will find E(X|Y = 2) and V ar(X|Y = 2). Since

P (Y = 2) = P ((X,Y ) = (1, 2)) = 0.5,

we have

P (X = 1|Y = 2) =
P ((X,Y ) = (1, 2))

P (Y = 2)
=

0.5

0.5
= 1,

and

P (X = x|Y = 2) =
P ((X,Y ) = (x, 2))

P (Y = 2)
= 0

for x ̸= 1, we have

E(X|Y = 2) = 1× P (X = 1|Y = 2) = 1

and

V ar(X|Y = 2) = E(X2|Y = 2)− (E(X|Y = 2))2

= 12 × P (X = 0|Y = 2)︸ ︷︷ ︸
=1

−(1)2 = 0.

In summary, we have

E(X|Y ) = 0.2I{−3}(Y ) + I{2}(Y )

and
V ar(X|Y ) = 0.16I{−3}(Y ).

(b) To find E(V ar(X|Y )), note that V ar(X|Y ) can be 0.16 or 0 with
probabilities P (Y = −3) and P (Y = 2) respectively, so

E(V ar(X|Y )) = 0.16× P (Y = −3) + 0× P (Y = 2)

= 0.16× 0.5 = 0.08.

To find V ar(E(X|Y )), note that E(X|Y ) can be 0.2 or 1 with prob-
abilities P (Y = −3) and P (Y = 2) respectively, so

E(E(X|Y ))2 = (0.2)2 × P (Y = −3) + 12 × P (Y = 2)

= 0.04× 0.5 + 1× 0.5 = 0.52

and

E(E(X|Y )) = (0.2)× P (Y = −3) + 1× P (Y = 2)

= 0.2× 0.5 + 1× 0.5 = 0.6,

which gives

V ar(E(X|Y )) = E(E(X|Y ))2 − (E(E(X|Y )))2

= 0.52− (0.6)2 = 0.16.
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To find V ar(X) using the joint PMF of (X,Y ), note that

E(X2) = 12 × 0.5 + 02 × 0.4 + 12 × 0.1 = 0.6

and
E(X) = 1× 0.5 + 0× 0.4 + 1× 0.1 = 0.6,

so V ar(X) = E(X2)− (E(X))2 = 0.6− (0.6)2 = 0.24.

From the above calculation, we have V ar(X) = 0.24 and

E(V ar(X|Y )) + V ar(E(X|Y )) = 0.08 + 0.16 = 0.24,

so the equality

V ar(X) = E(V ar(X|Y )) + V ar(E(X|Y ))

holds for the (X,Y ) in this problem.

39. Let

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

for y ∈ R. Let RY = {y : fY (y) > 0} and

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

for y ∈ RY , then for y ∈ RY , we have

E(u(X,Y )|Y = y) =

∫ ∞

−∞
u(x, y)fX|Y=y(x)dx. (47)

(a) For y ∈ RY ,

E(g(X,Y )h(Y )|Y = y)
(47)
=

∫ ∞

−∞
g(x, y)fX|Y=y(x)dx

= h(y)

∫ ∞

−∞
g(x, y)fX|Y=y(x)dx

(47)
= h(y)E(g(X,Y )|Y = y),

so E(g(X,Y )h(Y )|Y ) = h(Y )E(g(X,Y )|Y ).

(b) For y ∈ RY ,

E(g1(X,Y ) + g2(X,Y )|Y = y)

(47)
=

∫ ∞

−∞
(g1(x, y) + g2(x, y))fX|Y=y(x)dx

=

∫ ∞

−∞
g1(x, y)fX|Y=y(x)dx+

∫ ∞

−∞
g2(x, y)fX|Y=y(x)dx

(47)
= E(g1(X,Y )|Y = y) + E(g2(X,Y )|Y = y),

so

E(g1(X,Y ) + g2(X,Y )|Y ) = E(g1(X,Y )|Y ) + E(g2(X,Y )|Y ).
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40. (a) For (x, y) ∈ R2, let

fX,Y (x, y) = f0,1(y)f1+2y,1(x),

then fX,Y is a PDF of (X,Y ), and

fX,Y (x, y) =
1√
2π

e−0.5y2

· 1√
2π

e−0.5(x−(1+2y))2

=
1

2π
e−0.5((2y−(x−1))2+y2)

=
1

2π
e−2.5(y−0.4(x−1))2−0.1(x−1)2

=
1√
2π/5

e−2.5(y−0.4(x−1))2 1√
2π · 5

e−0.1(x−1)2

= f1,
√
5(x)f0.4(x−1),

√
1/5

(y)

for (x, y) ∈ R2. Since∫ ∞

−∞
fX,Y (x, y)dy =

∫ ∞

−∞
f1,

√
5(x)f0.4(x−1),

√
1/5

(y)dy

= f1,
√
5(x)

for x ∈ R, f1,
√
5 is a PDF of X.

(b) From Part (a), we have for x ∈ R,∫ ∞

−∞
fX,Y (x, y)dy = f1,

√
5(x)

and

fX,Y (x, y)

f1,
√
5(x)

=
f1,

√
5(x)f0.4(x−1),

√
1/5

(y)

f1,
√
5(x)

= f
0.4(x−1),

√
1/5

(y)

for y ∈ R. Thus {f
0.4(x−1),

√
1/5

: x ∈ R} is a version of the condi-

tional PDF of Y given X and

E(Y |X) =

∫ ∞

−∞
yf

0.4(x−1),
√

1/5
(y)dy

∣∣∣∣
x=X

= 0.4(X − 1).

Here we have used the result that for σ > 0 and µ ∈ R,∫ ∞

−∞
yfµ,σ(y)dy = µ

since fµ,σ is a PDF of N(µ, σ2).

(c) X and Y are not independent. To see this, note that if X and Y
are independent, then E(Y |X) = E(Y ) is a constant, which implies
that V ar(E(Y |X)) = 0. From Part (b), we have E(Y |X) = 0.4(X −
1), which is a random variable of variance (0.4)2V ar(X) = (0.4)2 ·
(
√
5)2 > 0, so X and Y cannot be independent.

41. Let pX and pY be PMF’s of X and Y respectively, and let

pX,Y (x, y) = pX(x)pY (y)
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for (x, y) ∈ R2. Since X and Y are independent, pX,Y is a joint PMF of
(X,Y ). Let RX = {x : pX(x) > 0} and RY = {y : pY (y) > 0}, then

E(u(X)v(Y ) =
∑

y∈RY

∑
x∈RX

u(x)v(y)pX,Y (x, y)

=
∑

y∈RY

∑
x∈RX

u(x)v(y)pX(x)pY (y)

=
∑

y∈RY

v(y)pY (y)

( ∑
x∈RX

u(x)pX(x)

)
︸ ︷︷ ︸

E(u(X))

= E(u(X))
∑

y∈RY

v(y)pY (y)︸ ︷︷ ︸
E(v(Y ))

= E(u(X))E(v(Y )).

42. Let MX+Y,X−Y be the joint MGF of (X + Y,X − Y ), then

MX+Y,X−Y (t1, t2)

= E(et1(X+Y )+t2(X−Y ))

= E(e(t1+t2)X+(t1−t2)Y )

= MX,Y (t1 + t2, t1 − t2)

(41)
= (1− (t1 + t2))

−α(1− (t1 − t2))
−β (48)

for (t1, t2) such that t1 + t2 < 1 and t1 − t2 < 1.

Let MX−Y and MX+Y be the marginal MGFs of X − Y and X + Y
respectively, then from the joint MGF MX+Y,X−Y given in (48),

MX−Y (t2) = MX+Y,X−Y (0, t2) = (1− t2)
−α(1 + t2)

−β

for t2 ∈ (−1, 1) and

MX+Y (t1) = MX+Y,X−Y (t1, 0) = (1− t1)
−(α+β)

for t1 ∈ (−∞, 1). Thus

MX+Y (t1)MX−Y (t2) = (1− t1)
−(α+β)(1− t2)

−α(1 + t2)
−β (49)

for (t1, t2) ∈ (−∞, 1) × (−1, 1). It is clear that from (48) and (49),
MX+Y,X−Y (t1, t2) andMX+Y (t1)MX−Y (t2) are not the same for all (t1, t2)
in {(t1, t2) : t1 + t2 < 1 and t1 − t2 < 1} ∩ (−∞, 1) × (−1, 1). Therefore,
X + Y and X − Y are not independent.

43. X and Y are not independent. To see this, note that for discrete random
variables X and Y that are independent of each other, we have that for y
such that P (Y = y) > 0,

P (X = x|Y = y) =
P ((X,Y ) = (x, y))

P (Y = y)

=
P (X = x)P (Y = y)

P (Y = y)
= P (X = x)
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for all x. In Problem 38, if X and Y are independent, then we must have

P (X = 0|Y = 2) = P (X = 0) = P (X = 0|Y = −3).

However, from the calculation in the solution to Problem 40, we have
P (X = 0|Y = 2) = 0 and P (X = 0|Y = −3) = 0.8. Since P (X = 0|Y =
2) ̸= P (X = 0|Y = −3), X and Y cannot be independent.

44. For x ∈ {x1, . . . , xm}, let

p(x) = P (X = x|Y = y1),

then by assumption, P (X = x|Y = yj) = p(x) for j ∈ {1, . . . , n}. Thus
for x ∈ {x1, . . . , xm},

P (X = x) =

n∑
j=1

P (X = x|Y = yj)P (Y = yj)

=

n∑
j=1

p(x)P (Y = yj)

= p(x)

n∑
j=1

P (Y = yj)︸ ︷︷ ︸
1

= p(x),

and for x ∈ {x1, . . . , xm}, y ∈ {y1, . . . , yn},

P (X = x|Y = y) = p(x) = P (X = x),

which implies that P (X = x and Y = y)/P (Y = y) = P (X = x) and

P (X = x and Y = y) = P (X = x)P (Y = y)

for all x ∈ {x1, . . . , xm}, y ∈ {y1, . . . , yn}. Therefore, X and Y are inde-
pendent.

45. (a) Let Z = (Z1, Z2, Z3)
T and

fZ(z) =

(
1√
2π

)3

e−
1
2 z

T z

for z = (z1, z2, z3)
T ∈ R3, then fZ is a PDF of Z since Z1, Z2, Z3

are IID N(0, 1) random variables. Let Y = (Y1, Y2, Y3)
T and

A =

 1 1 1
0 1 1
0 0 1

−1

=

 1 −1 0
0 1 −1
0 0 1

 ,

then Z = AY . For y = (y1, y2, y3)
T ∈ R3, let

fY (y) = fZ(Ay)|det(A)|

=

(
1√
2π

)3

e−
1
2 (Ay)TAy|det(A)|,
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where det(A) is the determinant of A, then fY is a PDF of Y =
(Y1, Y2, Y3)

T . Since det(A) = 1, we have

fY (y) =

(
1√
2π

)3

e−
1
2y

TBy

for y ∈ R3, where

B = ATA =

 1 −1 0
−1 2 −1
0 −1 2

 .

(b) Since

Cov(Y1, Y3) = Cov(Z1 + Z2 + Z3, Z3) = V ar(Z3) = 1 ̸= 0,

Y1 and Y3 are not independent. Thus Y1 and (Y2, Y3) are not inde-
pendent.

46. We will show that X̄ and Y are independent using the joint MGF of X̄
and Y . Let MX̄,Y be the joint MGF of X̄ and Y and let MX1,...,Xn be the
joint MGF of (X1, . . ., Xn), then for (s1, . . . , sn) ∈ Rn,

MX1,...,Xn
(s1, . . . , sn) = E(es1X1) · · ·E(esnXn)

=

n∏
i=1

eµsi+0.5σ2s2i

= eµ(
∑n

i=1 si)e0.5σ
2(

∑n
i=1 s2i ),

and for s ∈ (−∞,∞) and t = (t1, . . . , tn)
T ∈ Rn,

MX̄,Y (s, t) = EesX̄+
∑n

i=1 ti(Xi−X̄)

(t̄ =

n∑
i=1

ti/n) = Ee(s−nt̄)X̄+
∑n

i=1 tiXi

= MX1,...,Xn(t1 + (s− nt̄)/n, . . . , tn + (s− nt̄)/n)

= eµ(
∑n

i=1(ti+(s−nt̄)/n))e0.5σ
2(

∑n
i=1(ti+(s−nt̄)/n))2)

= esµe0.5σ
2((

∑n
i=1 t2i )+(s2/n)−nt̄2)

= esµe0.5σ
2(s2/n)e0.5σ

2((
∑n

i=1 t2i )−nt̄2). (50)

Let MX̄ and MY be the MGFs of X̄ and Y respectively, then for s ∈
(−∞,∞),

MX̄(s) = MX̄,Y (s, t)|t=(0,...,0)T = esµe0.5σ
2(s2/n)

and for t = (t1, . . . , tn)
T ∈ Rn,

MY (t) = MX̄,Y (0, t) = e0.5σ
2((

∑n
i=1 t2i )−nt̄2).

Therefore, for s ∈ (−∞,∞) and t = (t1, . . . , tn)
T ∈ Rn,

MX̄(s)MY (t) = esµe0.5σ
2(s2/n)e0.5σ

2((
∑n

i=1 t2i )−nt̄2)

(50)
= MX̄,Y (s, t),

so X̄ and Y are independent.
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47. For t < 1,

E(etZ
2
1/2) =

∫ ∞

−∞
e0.5tz

2 1√
2π

e−0.5z2

dz

=
1√
2π

∫ ∞

−∞
e−0.5(1−t)z2

dz

=

√
2π(1/1− t)√

2π
= (1− t)−1/2,

so

E(et(U/2)) = E(et(Z
2
1+···+Z2

m)/2)

= [E(etZ
2
1/2)]m (since Z1, . . ., Zm are IID)

= ((1− t)−1/2)m = (1− t)−m/2

for t < 1, and the MGF of U/2 is the same as the MGF of Γ(a, 1) given
in (42) in the solution to Problem 35 with a = m/2, so U/2 ∼ Γ(m/2, 1).

48. For i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, let

(Wi,1, . . . ,Wi,m)

be the i-th row of W and let

(b1,j , . . . , bm,j)
T

be the j-th column of B. Then, for i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, the
(i, j)-th element of WB is

Wi,1b1,j + · · ·+Wi,mbm,j ,

so the (i, j)-th element of E(WB)

E(Wi,1b1,j + · · ·+Wi,mbm,j)

= E(Wi,1)b1,j + · · ·+ E(Wi,m)bm,j .

Moreover, the (i, j)-th element of E(W )B is also

E(Wi,1)b1,j + · · ·+ E(Wi,m)bm,j

since
(E(Wi,1), . . . , E(Wi,m))

is the i-th row of E(W ) and

(b1,j , . . . , bm,j)
T

is the j-th column of B. We have verified that the (i, j)-th element of
E(WB) and the (i, j)-th element of E(W )B are both equal to

E(Wi,1)b1,j + · · ·+ E(Wi,m)bm,j

for i ∈ {1, . . . , n}, j ∈ {1, . . . , k}. Thus E(WB) = E(W )B.
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49. Since
AX − E(AX) = AX −AE(X) = A[X − E(X)],

the covariance matrix of AX is

E([AX − E(AX)][AX − E(AX)]T ) = E(A[X − E(X)][X − E(X)]TAT )

= AE([X − E(X)][X − E(X)]TAT )

= AE([X − E(X)][X − E(X)]T )︸ ︷︷ ︸
covariance matrix of X

AT

= AΣAT .

50. Let X = (X1, . . . , Xm)T and Y = (Y1, . . . , Yn)
T . Let µX = E(X),

µY = E(Y ), and let ΣX and ΣY be the covariance matrices of X and Y
respectively, then the mean vector of (XT ,Y T )T is (µT

X ,µT
Y )

T and the
covariance matrix of (XT ,Y T )T is(

ΣX Om×n

On×m ΣY

)
,

where Oa×b denotes the a× b matrix of 0’s for positive integers a and b.

Let MX,Y , MX and MY be the MGFs of (XT ,Y T )T , X and Y respec-
tively. Then for s = (s1, . . . , sm)T ∈ Rm and t = (t1, . . . , tn)

T ∈ Rn,

lnMX,Y (s, t) =
(
sT tT

)( µX

µY

)
+

1

2

(
sT tT

)( ΣX Om×n

On×m ΣY

)(
s
t

)
= sTµX + tTµY +

1

2

(
sTΣX︸ ︷︷ ︸
1×m

tTΣY︸ ︷︷ ︸
1×n

)(
s
t

)
= sTµX + tTµY +

1

2

(
sTΣXs+ tTΣY t

)
= lnMX,Y (s, t)|t=(0,...0)T + lnMX,Y (s, t)|s=(0,...0)T

= lnMX(s) + lnMY (t),

so
MX,Y (s, t) = MX(s)MY (t)

for all s = (s1, . . . , sm)T ∈ Rm and t = (t1, . . . , tn)
T ∈ Rn, which implies

that X and Y are independent.

51. (a) Since the distribution of (X,Y, Z)T is a multivariate normal distri-
bution and for a constant b ∈ R,

(
X

Y − bX

)
=

(
1 0 0
−b 1 0

) X
Y
Z

 ,

the distribution of (X,Y −bX)T is a multivariate normal distribution.
In such case,

Y − bX and X are independent

⇔ Cov(X,Y − bX) = 0

⇔ Cov(X,Y )− bCov(X,X) = 0.
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Take

b =
Cov(X,Y )

var(X)
=

2

10
=

1

5
,

then Y − bX and X are independent.

(b) Since the distribution of (X,Y, Z)T is a multivariate normal distri-
bution and for constants c, d ∈ R, X

Y
Z − cY − dX

 =

 1 0 0
0 1 0
−d −c 1

 X
Y
Z

 ,

the distribution of (X,Y, Z − cY − dX)T is a multivariate normal
distribution. In such case,

Z − cY − dX and (X,Y ) are independent

⇔ Cov(X,Z − cY − dX) = 0 and Cov(Y, Z − cY − dX) = 0

⇔
(

Cov(X,Z)
Cov(Y,Z)

)
=

(
V ar(X) Cov(X,Y )

Cov(X,Y ) V ar(Y )

)(
d
c

)
.

Take(
d
c

)
=

(
V ar(X) Cov(X,Y )

Cov(X,Y ) V ar(Y )

)−1(
Cov(X,Z)
Cov(Y,Z)

)
=

(
10 2
2 16

)−1(
5
3

)
=

1

10 · 16− 2 · 2

(
16 −2
−2 10

)(
5
3

)
=

(
74/156
20/156

)
=

(
37/78
5/39

)
,

then Z − cY − dX and (X,Y ) are independent.

52. For z = (z1, . . . , zn) ∈ Rn, let fZ1,...,Zn
(z) = f0,1(z1) · · · f0,1(zn) for

(z1, . . . , zn) ∈ Rn, where f0,1 is the N(µ, σ2) PDF fµ,σ defined in Problem
27 with µ = 0 and σ = 1, then fZ1,...,Zn is a PDF of (Z1, . . . , Zn). Let
µ = (µ1, . . . , µn)

T . For y = (y1, . . . , yn)
T ∈ Rn, let

(z1(y), . . . , zn(y))
T = A−1(y − µ) (51)

and define
fY1,...,Yn(y) = fZ1,...,Zn(A

−1(y − µ))|J |,

where

J = det


∂

∂y1
z1(y) · · · ∂

∂yn
z1(y)

∂
∂y1

z2(y) · · · ∂
∂yn

z2(y)
...

...
...

∂
∂y1

zn(y) · · · ∂
∂yn

zn(y)

 (51)
= det(A−1),

then fY1,...,Yn is a PDF of (Y1, . . . , Yn). Note that

det(A)det(A−1) = det(AA−1) = 1
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and
det(AAT ) = det(A)det(AT ) = (det(A))2,

so
|det(A−1)| = |1/det(A)| = (det(AAT ))−1/2,

and

fY1,...,Yn
(y) = fZ1,...,Zn

(A−1(y − µ))|J |

=

(
1√
2π

)n

e−0.5(y−µ)T (A−1)TA−1(y−µ)|det(A−1)|

=

(
1√
2π

)n

e−0.5(y−µ)T (AAT )−1(y−µ)(det(AAT ))−1/2

for y ∈ Rn. Thus fY1,...,Yn
is a PDF of (Y1, . . . , Yn) that is determined by

AAT and µ = (µ1, . . . , µn)
T .

53. Since

d

db
S(b) =

d

db
E(U − bX)2

=
d

db
E(U2 − 2bUX + b2X2)

=
d

db

[
E(U2)− 2bE(UX) + b2E(X2)

]
= −2E(UX) + 2bE(X2)

and

E

[
d

db
(U − bX)2

]
= E

[
2(U − bX)

d

db
(U − bX)

]
= E[2(U − bX)(−X)]

= E[−2UX + 2bX2]

= −2E(UX) + 2bE(X2),

we have
d

db
S(b) = E

[
d

db
(U − bX)2

]
.

54. Let a = (1, 1, 1, 0)T , then

aTX = (X1 +X2 +X3)
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and

(V ar(X1 +X2 +X3)) = (V ar(aTX))

= aTΣa

=
(
1 1 1 0

)
2 −1 0 0
−1 2 0 0
0 0 2 0
0 0 0 3




1
1
1
0


=

(
1 1 1

) 2 −1 0
−1 2 0
0 0 2

 1
1
1


=

(
1 1 1

) 1
1
2


= (4).

55. (a) For (x, y) ∈ R2,

fX,Y (x, y) =

∫ ∞

−∞
fX,Y,Z(x, y, z)dz

= c

∫ ∞

0

e−(x2+4xy+5y2)ze−zdz

= ce−(x2+4xy+5y2)

∫ ∞

0

ze−zdz

= ce−(x2+4xy+5y2).

Here the last equality follows from∫ ∞

0

ze−zdz = lim
b→∞

(
(−ze−z)|b0 +

∫ b

0

e−zdz

)
= 1. (52)

For (x, y) ∈ R2, let

fZ|(X,Y )=(x,y)(z) =
fX,Y,Z(x, y, z)

fX,Y (x, y)

=
ce−(x2+4xy+5y2)ze−zI(0,∞)(z)

ce−(x2+4xy+5y2)

= ze−zI(0,∞)(z)

for z ∈ R, then {fZ|(X,Y )=(x,y) : (x, y) ∈ R2} is a version of the
conditional PDF of Z given (X,Y ).

(b) From the solution to Part (a), fX,Y is a PDF of (X,Y ), where

fX,Y (x, y) = ce−(x2+4xy+5y2)
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for (x, y) ∈ R2. For y ∈ R, let

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

=

∫ ∞

−∞
ce−(x2+4xy+5y2)dx

=

∫ ∞

−∞
ce−(x+2y)2−y2

dx

= ce−y2√
2π · 0.5

∫ ∞

−∞

1√
2π · 0.5

e−(x+2y)2dx︸ ︷︷ ︸
integral of N(−2y, 0.5) PDF

= ce−y2√
π,

then fY is a PDF of Y , so∫ ∞

−∞
ce−y2√

πdy = 1

and

c =
1√
π

(∫ ∞

−∞
e−y2

dy

)−1

=
1√
π


√
2π · 0.5

∫ ∞

−∞

1√
2π · 0.5

e−y2

dy︸ ︷︷ ︸
integral of N(0, 0.5) PDF


−1

=
1√
π
· 1√

2π · 0.5
=

1

π
.

For y ∈ R = {y : fY (y) > 0}, let

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

=
e−(x+2y)2−y2

/π

e−y2/
√
π

=
1√
π
e−(x+2y)2

for x ∈ (−∞,∞), then {fX|Y=y : y ∈ R} is a version of the condi-
tional PDF of X given Y .

(c) For y ∈ R, fX|Y=y is a PDF of N(−2y, 0.5). Let U ∼ N(−2y, 0.5),
then E(U) = −2y, V ar(U) = 0.5,

E(U2) = V ar(U) + [E(U)]2 = 0.5 + (−2y)2 = 0.5 + 4y2,

E(X|Y ) =

∫ ∞

−∞
xfX|Y=y(x)dx

∣∣∣∣
y=Y

= E(U)|y=Y

= (−2y)|y=Y = −2Y,
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E(X2|Y ) =

∫ ∞

−∞
x2fX|Y=y(x)dx

∣∣∣∣
y=Y

= E(U2)
∣∣
y=Y

= (0.5 + 4y2)
∣∣
y=Y

= 0.5 + 4Y 2,

and

V ar(X|Y ) = E(X2|Y )− [E(X|Y )]2 = 0.5 + 4Y 2 − (−2Y )2 = 0.5.

(d) Since E(X|Y ) = −2Y is a linear function of Y , E(X|Y ) = −2Y is
the best linear predictor of X based on Y .

Note. Another way to solve this part of the problem is to obtain the
best linear predictor of X based on Y using E(X), E(Y ), V ar(X),
V ar(Y ) and Cov(X,Y ). Below we will compute these quantities first.
From Part (b),

fY (y) =
1√
π
e−y2

for y ∈ R, so fY is a PDF of N(0, σ2) with σ2 = 0.5 and Y ∼
N(0, 0.5). Thus

E(Y ) = 0 and V ar(Y ) = 0.5. (53)

To find Cov(X,Y ), we will first compute E(X), E(X2), E(XY ):

E(X) = E[E(X|Y )] = E(−2Y ) = −2E(Y )
(53)
= 0, (54)

V ar(X) = E(X2)

= E[E(X2|Y )]

= E(0.5 + 4Y 2)

= 0.5 + 4[V ar(Y ) + (E(Y ))2]

(53)
= 0.5 + 4 · 0.5 = 2.5, (55)

E(XY ) = E[E(XY |Y )]

= E[Y E(X|Y )]

= E[Y (−2Y )]

= −2E(Y 2)

= −2[V ar(Y ) + (E(Y ))2]

(53)
= −2 · 0.5 = −1. (56)

From (54), (56) and (53), we have

Cov(X,Y ) = E(XY )− E(X)E(Y ) = −1− 0 · 0 = −1. (57)

Let a+ bY be the best linear predictor of X based on Y , then

E(X − (a+ bY )) = 0 (58)

and
Cov(X − (a+ bY ), Y ) = 0. (59)
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From (58),

a = E(X)− bE(Y )
(54)(53)

= 0− b · 0 = 0.

From (59),

b =
Cov(X,Y )

V ar(Y )

(57)(53)
=

−1

0.5
= −2,

so the best linear predictor of X based on Y is a+ bY = −2Y .

56. Let

fY (y) =
1√
2π

e−y2/2

for y ∈ (−∞,∞), then fY is a PDF of Y . Let fX,Y (x, y) = gy(x)fY (y) for
(x, y) ∈ R2, then fX,Y is a joint PDF of (X,Y ). The expression of fX,Y

can be re-written as follows:

fX,Y (x, y) = gy(x)fY (y)

=
1√
2π

e−0.5(x−y)2 1√
2π

e−y2/2

=
1

2π
e−y2+xy−0.5x2

=
1

2π
e−(y−0.5x)2−0.25x2

for (x, y) ∈ R2. Let

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

=

∫ ∞

−∞

1

2π
e−(y−0.5x)2−0.25x2

dy

=
1

2π
e−0.25x2

·
√
2π · 0.5

∫ ∞

−∞

1√
2π · 0.5

e−(y−0.5x)2dy︸ ︷︷ ︸
integral of N(0.5x, 0.5) PDF

=
1√
2π · 2

e−0.25x2

for x ∈ R and for x ∈ R, let

fY |X=x(y) =
fX,Y (x, y)

fX(x)

=
e−(y−0.5x)2−0.25x2

/(2π)

e−0.25x2/
√
2π · 2

=
1√
π
e−(y−0.5x)2

for y ∈ R, then {fY |X=x : x ∈ R} is a version of the conditional PDF of
Y given X.

57. We will introduce some notation first.

• For µ ∈ R, σ > 0, let fµ,σ denote the PDF of N(µ, σ) given in
Problem 27.
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• For µ ∈ Rp and Σ: a p × p covariance matrix, let gµ,Σ denote the
PDF of N(µ,Σ) given in Problem 52:

gµ,Σ(x) =
1

(2π)p/2
√
det(Σ)

e−0.5(x−µ)TΣ−1(x−µ),x ∈ Rp.

(a) We first find the best linear predictor of X1 based on X2 and X3.
Let a0 + b0X2 + c0X3 be the best linear predictor of X1 based on X2

and X3, then we have

Cov(X1 − (a0 + b0X2 + c0X3), X2) = 0,

Cov(X1 − (a0 + b0X2 + c0X3), X3) = 0

and
E(X1) = E(a0 + b0X2 + c0X3).

Therefore, (b0, c0) can be obtained by solving(
V ar(X2) Cov(X2, X3)

Cov(X2, X3) V ar(X3)

)(
b0
c0

)
=

(
Cov(X1, X2)
Cov(X1, X3)

)
,

which is (
2 0
0 2

)(
b0
c0

)
=

(
−1
0

)
,

which gives b0 = −1/2 and c0 = 0. In addition, a0 can be obtained
by

a0 = E(X1)− E(b0X2 + c0X3) = 0− ((−1/2) · 0 + 0 · 0) = 0.

The best linear predictor of X1 based on X2 and X3 is −X2/2.

Next, we find the best linear predictor of X4 based on X2 and X3.
Let a0 + b0X2 + c0X3 be the best linear predictor of X4 based on X2

and X3, then we have

Cov(X4 − (a0 + b0X2 + c0X3), X2) = 0,

Cov(X4 − (a0 + b0X2 + c0X3), X3) = 0

and
E(X4) = E(a0 + b0X2 + c0X3).

Therefore, (b0, c0) can be obtained by solving(
V ar(X2) Cov(X2, X3)

Cov(X2, X3) V ar(X3)

)(
b0
c0

)
=

(
Cov(X4, X2)
Cov(X4, X3)

)
,

which is (
2 0
0 2

)(
b0
c0

)
=

(
0
0

)
,

which gives b0 = 0 and c0 = 0. In addition, a0 can be obtained by

a0 = E(X1)− E(b0X2 + c0X3) = 0− 0 = 0.

The best linear predictor of X4 based on X2 and X3 is 0.

From the above calculation, the best linear predictor of (X1, X4)
T

based on X2 and X3 is (−X2/2, 0)
T .
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(b) From the solution to Part (a), the best linear predictor of X1 based
on X2 and X3 is −X2/2. Since −X2/2 is a linear function of X2 such
that

Cov(X1 − (−X2/2), X2) = 0

and
E[X1 − (−X2/2)] = 0,

−X2/2 is the best linear predictor of X1 based on X2 with expected
squared prediction error

E(X1 − (−X2/2))
2 = V ar(X1 +X2/2) + [E(X1 − (−X2/2))]

2

= V ar(X1) + 2Cov(X1, X2/2) + V ar(X2/2) + 02

= V ar(X1) + Cov(X1, X2) + V ar(X2)/4

= 2 + (−1) + 2/4 = 3/2.

Therefore, a version of the conditional PDF ofX1 givenX2 is
{
f−x2/2,

√
3/2

: x2 ∈ R
}
.

(c) We will first show that the best linear predictor of X1 based on
(X2, X3, X4)

T is −X2/2 by verifying

Cov(X1 − (−X2/2), X2) = 0, (60)

Cov(X1 − (−X2/2), X3) = 0, (61)

Cov(X1 − (−X2/2), X4) = 0, (62)

and
E[X1 − (−X2/2)] = 0. (63)

Note that from the solution to Part (a), −X2/2 is the best linear
predictor of X1 based on X2 and X3, so (60), (61) and (63) hold.
Moreover, (62) hold true since Cov(X1, X4) = 0 = Cov(X2, X4), so
we have shown that the best linear predictor of X1 based on X2, X3

and X4 is −X2/2.

The expected squared prediction error for predictingX1 using −X2/2
is

E(X1 − (−X2/2))
2 = 3/2,

which has been computed in the solution to Part (b). Thus a version

of the conditional PDF ofX1 given (X2, X3, X4)
T is

{
f−x2/2,

√
3/2

: (x2, x3, x4)
T ∈ R3

}
.

(d) Since the distribution of (X1, X2, X3, X4)
T is a multivariate normal

distribution and Cov(Xi, Xj) = 0 for i ∈ {1, 2} and j ∈ {3, 4},
(X1, X2)

T and (X3, X4)
T are independent. Let Σ0 be the covari-

nace matrix of (X1, X2)
T , then g(0,0)T ,Σ0

is a PDF of (X1, X2)
T , and{

g(0,0)T ,Σ0
: (x3, x4)

T ∈ R2
}

is a version of the conditional PDF of

(X1, X2)
T give (X3, X4)

T .

(e) Since (X1, X2)
T and (X3, X4)

T are independent,

E(X1X2|X3, X4) = E(X1X2)

= Cov(X1, X2) + E(X1)E(X2)

= −1 + 0 = −1.
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58. For x ∈ Rn and u ∈ Rm, let

fX,U (x,u) = fX(x)fU (u),

then fX,U is a PDF of (X,U) since X and U are independent. Consider
the transform T such that

T

((
x
u

))
=

(
x

g(x) + u

)
,

then

T

((
X
U

))
=

(
X

g(X) +U

)
=

(
X
Y

)
.

Let
fX,Y (x,y) = fX,U (x,y − g(x))|J |

for x ∈ Rn, y ∈ Rm, where

J = det

(
∂
∂xx

∂
∂yx

∂
∂x (y − g(x)) ∂

∂y (y − g(x))

)

= det

(
In×n On×m

∂
∂x (y − g(x)) Im×m

)
= 1.

Here for v: a vector value function of a vector w, ∂
∂wv denotes the matrix

whose (i, j)-th element is the partial derivative of the i-th component of
v with respect to the j-th component of w, In×n and Im×m are identity
matrices of sizes n × n and m ×m respectively, and On×m is the n ×m
matrix of zeros. From the above calculation, fX,Y is a joint PDF of
(X,Y ) and

fX,Y (x,y) = fX,U (x,y − g(x))|J | = fX(x)fU (y − g(x)) (64)

for x ∈ Rn and y ∈ Rm. It is clear that fX,Y > 0 since fX > 0 and
fU > 0 by assumption.

Let

g0(x) =

∫
Rm

fX,Y (x,y)dy

for x ∈ Rn, then g0(x) > 0 since fX,Y > 0. For x ∈ Rn = {x : g0(x) >
0}, let

gY |X=x(y) =
fX,Y (x,y)

g0(x)

for y ∈ Rm, then a version of the conditional PDF of Y given X is
{gY |X=x : x ∈ Rn}. Next, we will simplify the expressions of g0(x) and
gY |X=x. Note that for x ∈ Rn,

g0(x) =

∫
Rm

fX,Y (x,y)dy

(64)
=

∫
Rm

fX(x)fU (y − g(x))dy

= fX(x)

∫
Rm

fU (y − g(x)︸ ︷︷ ︸
u

)dy

= fX(x)

∫
Rm

fU (u)du︸ ︷︷ ︸
=1 since fU is a PDF

= fX(x), (65)
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and for x ∈ Rn,

gY |X=x(y) =
fX,Y (x,y)

g0(x)

(65)
=

fX,Y (x,y)

fX(x)

(64)
=

fX(x)fU (u− g(x))

fX(x)

= fU (y − g(x))

= fY |X=x(y) (by definition)

for y ∈ Rm. Therefore, a version of the conditional PDF of Y given X is
{gY |X=x : x ∈ Rn} = {fY |X=x : x ∈ Rn}.

59. By assumption, X and ε are two random variables such thatX ∼ N(0, σ2
1),

ε ∼ N(0, σ2
2), and X and ε are independent, so Q(σ1, σ2): the distribution

of (X + ε) is

N(E(X + ε), V ar(X + ε)) = N(0, σ2
1 + σ2

2).

Note that for σ1 > 0, σ2 > 0 such that σ1 ̸= σ2, we have

• both (σ1, σ2) and (σ2, σ1) are in (0,∞)× (0,∞), and

• Qσ1,σ2 = Qσ2,σ1 but (σ1, σ2) ̸= (σ2, σ1).

Therefore, the family C = {Qσ1,σ2
: (σ1, σ2) ∈ (0,∞) × (0,∞)} is not

identifiable.

60. (a)(b)(d) are true. (c) is false.

61. For ε > 0, we have

0 ≤ P (|θ̂ − θ| > ε)

= P (|θ̂ − E(θ̂)| > ε) (since E(θ̂) = θ by assumption)

≤ V ar(θ̂)

ε2
(Chebyshev’s inequality). (66)

Since limn→∞ V ar(θ̂) = 0 by assumption, we have

lim
n→∞

V ar(θ̂)

ε2
=

1

ε2
lim
n→∞

V ar(θ̂) = 0,

which, together with (66), implies that

lim
n→∞

P (|θ̂ − θ| > ε) = 0

for ε > 0, so the estimator θ̂ converges to θ in probability and θ̂ is a
consistent estimator of θ.

62. Since

∥(X1,n, . . . , Xk,n)
T − (Y1, . . . , Yk)

T ∥2 = |X1,n − Y1|2 + · · ·+ |Xk,n − Yk|2,
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for ε > 0,

|(Xj,n,−Yj |2 ≤ ε2

k
for each j ∈ {1, . . . , k}

⇒ ∥(X1,n, . . . , Xk,n)
T − (Y1, . . . , Yk)

T ∥2 ≤ ε2

⇒ ∥(X1,n, . . . , Xk,n)
T − (Y1, . . . , Yk)

T ∥ ≤ ε,

so

0 ≤ P
(
∥(X1,n, . . . , Xk,n)

T − (Y1, . . . , Yk)
T ∥ > ε

)
≤ P

(
∪k
j=1

{
|(Xj,n,−Yj |2 >

ε2

k

})
≤

k∑
j=1

P

({
|Xj,n,−Yj | >

ε√
k

})
. (67)

Suppose that Xj,n converges to Xj in probability for each j ∈ {1, . . . , k},
then for ε > 0,

lim
n→∞

P

({
|Xj,n,−Yj | >

ε√
k

})
= 0 (68)

for each j ∈ {1, . . . , k}. From (68) and (67), we have

lim
n→∞

P
(
∥(X1,n, . . . , Xk,n)

T − (Y1, . . . , Yk)
T ∥ > ε

)
= 0

for ε > 0. That is, we have

(X1,n, . . . , Xk,n)
T P→ (Y1, . . . , Yk)

T

as n → ∞. The proof of Fact 4 is complete.

63. Suppose that Xn and X are random vectors on (Ω,F , P ), where F is a
σ-field on Ω and P is a probability function defined on F . Let

A = {ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}

and
B = {ω ∈ Ω : lim

n→∞
g(Xn(ω)) = g(X(ω))}.

Then by the assumption that Xn converges to X almost surely as n → ∞,
we have

P (A) = 1. (69)

We will show that
A ⊂ B, (70)

then we have

0 ≤ P (Bc)
(70)

≤ P (Ac)
(69)
= 0

⇒ P (Bc) = 0 ⇒ P (B) = 1,

which implies g(Xn) converges to g(X) almost surely as n → ∞.
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It remains to prove (70). Note that for ω ∈ A, we have

lim
n→∞

Xn(ω) = X(ω),

which, together with the assumption that g is continuous on Rm, implies
that

lim
n→∞

g(Xn(ω)) = g(X(ω)),

which implies that ω ∈ B. Therefore, A ⊂ B and (70) holds.

64. Since X1, . . ., Xn are IID and

E(X1) =

∫ θ

0

x · 1
θ
dx =

θ

2

is finite, by SLLN, X̄ converges to θ/2 almost surely as n → ∞, so X̄
is a consistent estimator of θ/2. Let g(x) = 1/(2x) for x > 0, then g is
continuous at θ/2 for θ > 0. Apply the continuous mapping theorem for
convergence in probability, g(X̄) = 1/(2X̄) is a consistent estimator of
g(θ/2) = 1/(2 · θ/2) = 1/θ.

65. (a) LetMY be the MGF of Y , where Y ∼ Γ(α, 1) as given in the problem.
Since X1 ∼ βY , we will find E(X1) and E(X2

1 ) by finding E(Y ) and
E(Y 2) first using MY .

By the solution to Problem 34(b), MY (s) = (1 − s)−α for s < 1.
Since for α > 0,

d

ds
MY (s) = α(1− s)−α−1

and
d2

ds2
MY (s) = α(α+ 1)(1− s)−α−2,

we have
E(Y ) = α(1− s)−α−1

∣∣
s=0

= α (71)

and
E(Y 2) = α(α+ 1)(1− s)−α−2

∣∣
s=0

= α(α+ 1). (72)

Since X1 ∼ βY ,

E(X1) = E(βY ) = βE(Y )
(71)
= αβ

and

E(X2
1 ) = E((βY )2) = β2E(Y 2)

(72)
= β2α(α+ 1),

which gives

V ar(X1) = E(X2
1 )− [E(X1)]

2 = β2α(α+ 1)− (αβ)2 = αβ2.

(b) Let µ = E(X1) and µ2 = E(X2
1 ), then from Part (a), we have{

µ = αβ;
µ2 = αβ2 + (αβ)2.

(73)

In (73), we can solve for α and β as functions of µ and µ2, which
gives

β =
µ2 − µ2

µ
and α =

µ

β
=

µ

(µ2 − µ2)/µ
=

µ2

µ2 − µ2
.
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Let

g(s, t) =
s2

t− s2
and h(s, t) =

t− s2

s

for (s, t) ∈ R2 such that s > 0 and t > s2, then we have

(i) α = g(µ, µ2),

(ii) β = h(µ, µ2), and

(iii) g and h are continuous at (µ, µ2) since by assumption, α > 0
and β > 0, which implies that

µ = αβ > 0 and µ2 = αβ2 + (αβ)2 > µ2.

Let X̄ =
∑n

i=1 Xi/n and Ȳ =
∑n

i=1 X
2
i /n, then (X̄, Ȳ )T is a con-

sistent estimator of (µ, µ2)
T by SLLN. By the continuous mapping

theorem for convergence in probability,

(g(X̄, Ȳ ), h(X̄, Ȳ ))T =

(
(X̄)2

Ȳ − (X̄)2
,
Ȳ − (X̄)2

X̄

)T

is a consistent estimator for

(g(µ, µ2), h(µ, µ2))
T =

(
µ2

µ2 − µ2
,
µ2 − µ2

µ

)T

= (α, β)T .

66. (a) Let Ui = (I{a1}(Xi), I{a2}(Xi), I{a3}(Xi))
T for i = 1, . . ., n and Ū =∑n

i=1 Ui/n, then U1, . . ., Un are IID random vectors and E(U1) =
(p1, p2, p3)

T , so

Yn =
√
n

 p̂1
p̂2
p̂3

−

 p1
p2
p3

 =
√
n
(
Ū − E(U1)

)
.

By C.L.T., Yn converges to N(0,Σ0) in distribution, where 0 =
(0, 0, 0)T and

Σ0 = covariance matrix of U1

=

 V ar(I{a1}(X1)) Cov(I{a1}(X1), I{a2}(X1)) Cov(I{a1}(X1), I{a3}(X1))
Cov(I{a2}(X1), I{a1}(X1)) V ar(I{a2}(X1)) Cov(I{a2}(X1), I{a3}(X1))
Cov(I{a3}(X1), I{a1}(X1)) Cov(I{a3}(X1), I{a2}(X1)) V ar(I{a3}(X1))

 .

Note that for j, k ∈ {1, 2, 3} such that j ̸= k,

Cov(I{aj}(X1), I{ak}(X1)) = E[I{aj}(X1) · I{ak}(X1)]− E(I{aj}(X1))E(I{ak}(X1))

= 0− pjpk = −pjpk,

and for j ∈ {1, 2, 3},

V ar(I{aj}(X1)) = E[(I{aj}(X1))
2]− [E(I{aj}(X1))]

2

= E[(I{aj}(X1))]− p2j

= pj − p2j .

Thus

Σ0 =

 p1 − p21 −p1p2 −p1p3
−p1p2 p2 − p22 −p2p3
−p1p3 −p2p3 p3 − p23

 (74)

and the limiting distribution of Yn is N(0,Σ0).
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(b) Let Y be a random vector such that Y ∼ N(0,Σ0), where Σ0 is given
in (74), then by Part (a), Yn converges to Y in distribution as n → ∞.
For y = (y1, y2, y3)

T ∈ R3, define g(y) = A−1y, then g is continu-
ous on R3. By the continuous mapping theorem for convergence in
distribution, we have

A−1Yn = g(Yn) converges in distribution to g(Y ) = A−1Y

as n → ∞, so the limiting distribution of A−1Yn is the distribution
of A−1Y . Since Y ∼ N(0,Σ0), the distribution of A−1Y is

N(E(A−1Y ), A−1Σ0(A
−1)T ) = N(0, A−1Σ0A

−1)

since

A−1 =

 1/
√
p
1

0 0
0 1/

√
p
2

0
0 0 1/

√
p
3

 = (A−1)T .

Let Σ = A−1Σ0A
−1, then the limiting distribution of A−1Yn is

N(0,Σ).

To show that Σ2 = Σ, let p = (p1, p2, p3)
T , then ppT is a 3×3 matrix

whose (i, j)-th element is pipj for i, j ∈ {1, 2, 3} and

Σ0
(74)
=

 p1 − p21 −p1p2 −p1p3
−p1p2 p2 − p22 −p2p3
−p1p3 −p2p3 p3 − p23


=

 p1 0 0
0 p2 0
0 0 p3

+

 −p21 −p1p2 −p1p3
−p1p2 −p22 −p2p3
−p1p3 −p2p3 −p23


= A2 − ppT ,

which implies that

Σ = A−1Σ0A
−1

= A−1(A2 − ppT )A−1

= A−1A2A−1 −A−1ppTA−1

= I3×3 −A−1ppTA−1, (75)

where I3×3 is the 3× 3 identity matrix. Moreover,

pTA−1 = (p1 p2 p3)

 1/
√
p
1

0 0
0 1/

√
p
2

0
0 0 1/

√
p
3

 = (
√
p1

√
p2

√
p3).

(76)
Therefore,

Σ2 (75)
= Σ

(
I3×3 −A−1ppTA−1

)
= Σ− ΣA−1ppTA−1

(75)
= Σ−

(
I3×3 −A−1ppTA−1

)
A−1ppTA−1

(76)
= Σ−

A−1ppTA−1 −A−1p (
√
p1

√
p2

√
p3)

 √
p1√
p2√
p3


︸ ︷︷ ︸

=1

pTA−1


= Σ.
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