Solutions to Homework Problems

1. We will show that

(UnZy4n)" = Moy (47) 1)
by proving that

(UnZ14n)® C Moy (47) 2)
and

ne1 (A7) € (UnZyAn)©. (3)

We will first prove (2). Note that

€ (Upli4,)°
=z ¢ U An
=z € Aj for each n € {1,2,...}
=z € ML, (47),

so (2) holds.
To prove (3), note that

x € MLy (A7)

=z € A{ for each n € {1,2,...}
=z g U A,

=1 € (Unly4n)°,

so (3) holds.
Since both (2) and (3) hold, we have (1).
2. Since o(C) is a o-field, o(C) is closed under taking completement /countable
union/countable intersection. Therefore, we have the following results.
o The set {3} = AN Bisin o(C) since A and B are in o(C).
o The set {3} is in o(C) since {3} is in o(C).
e The set {1,2} = AN {3} is in o(C) since both A and {3} are in
a(C).
e The set {4,5} = BN {3}°is in o(C) since both A and {3} are in
a(C).

Let Cy = {3}, Cy = {1,2} and C3 = {4,5}, then 0, Cy, Cq, C3 are in
o(C). o(C) should also include sets of the form: Dy U Dy U D3, where D;
is () or C; for i = 1,2,3. Therefore, o(C) should include the follwing sets:
e QUPUD =0,
o C1UDUD = {3},
e PUCUD={1,2},
e PUPUC3 = {4,5},
CLuCy U =1{3,1,2},
C1UPUC;s = {3,4,5},
PUCyUC3 ={1,2,4,5},
C1UCUCs=1{1,2,3,4,5} = Q.



3.

Indeed, o(C) is the collection of the above 8 sets.

(a) To find ¢, note that 3, (150 Px(2) =1, s0

1 = 02404+ c(0.5)°
=1
0.5¢
1-05

0.6 +

which gives c=1—0.6 = 0.4.

(b)

P(X >25) = i px(x)

=26

i 0.4-(0.5)

=26
0.4 - (0.5)2
1-05

=0.8-(0.5)%.

1-2- P((X,Y) = (1,2)) +3-2- P((X,Y) = (3,2))
+3.6-P((X,Y) = (3,6)) +4+3-7- P((X,Y) = (3,7))
2.0.5+6-0.1+18-0.3+21-0.1

9.1

(b) The possible values of XY are 1-2=2,3-2=26,3-6 = 18 and
3.7 =21. Let pxy be the PMF of XY, then pxy ({2}) = P((X,Y) =
(1,2)) = 05, pxy({6}) = P((X,Y) = (3,2)) = 0.1, pxy({18}) =
P((X,Y)=(3,6)) =0.3 and pxy({21}) = P((X,Y) =(3,7)) = 0.1.

Thus

E(XY)

2-pxy({2}) +6 - pxy ({6}) + 18- pxy ({18}) + 21 - pxv ({21})
2:-05+6-014+18-0.34+21-0.1=9.1.



(b)

E(X) =
BE(X(X - 1))
(m=k—2)

From Part (a), E(X?—X)
X)+ E(X) =M+ ) and

Var(X) = EB(X?) -

P(X > 0.6)

= A2 and E(X)

> apx(@)
z:px (x)>0
Zk (e Ak /K1)
k=0
> k(e AR
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k=1
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Il
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oo
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0.6

1
= / ldz= 0.4.
0.6



BE(X?%) = /OO 2% fo1(z)dz

— 00

1
= / rdr =1/3.
0

7. (a) Note that {5}, {1,4}, {2} are disjoint and
A ={L4;u{2tU{5}
B ={L4}u{2}
¢ ={14}u{5},
so we can take Dy, Dy and Dj so that {D;, Do, D3} is {{5}, {1,4}
{21}
(b) By the additivity of P, we have

P(A) = P({1,4}) + P({2}) + P({5});
P(B) = P({1,4}) + P({2});
P(C) = P{1,4}) + P({5})
In the above equations, treat P(A), P(B) and P(C) as known and
solve for P({5}), P({1,4}) and P({2}), then we have
P({5})  =P(A) - P(B)
P({1,4}) = P(C) - P(A)+ P(B) (4)
P({2}) =P(B)-P(C)+P(A) - P(B)
and
P({3}) =1 - (P({1,4}) + P({2}) + P({5})) = P(A).
If

(P(A), P(B),P(C)) =(0.5,0.3,0.1), (5)
then (4) gives
P({1,4}) =P(C)-P(A)+ P(B)=0.1-0.5+03 <0,
which is impossible. Therefore, we cannot have (5).

8. To prove

n—oo
note that {A$}>°, is an increasing sequence of events in F, so by con-
tinuity of P for the increasing case (Fact 1 given in the problem), we
have

lim P(A5) = P (U3, (A3)). ™
Thus
nILH;oP(An) = nlgngo(lfP(AfL))
1Pz
P (U1 47)°)
De Morgan’s law = P (NS, (Af))
= P(ﬂﬁ’ilx‘ln)

and (6) holds. Note that the last second equality follows from the result
of Problem 1, which is known as a part of the De Morgan’s laws.



9.

10.

11.

Let

e (33
nn

forn =1,2,..., then {A,}°2, is a decreasing sequence and N2 ; A,, = {0}.
Therefore,

P({0}) = lim P(4,)= 1 04+% =04
Let

An = {X S _an} = {UJ e X((U) € (_007 —CL,,,]}

for n =1, 2, ..., then the sequence {A,}22, is decreasing since {a, }5
is increasing. By the continuity of P for the decreasing case (the result in
problem 8), we have

P(A32,A,) = lim P(A,). (8)

n—oo
Since P(A,) = F(—ay), (8) becomes

lim F(—a,) = PN, A). (9)

n—oo
In addition, the set N>, A,, = 0, so
P(ﬂfleAn) = P(Q)) =0,
which, together with (9), gives

lim F(—a,) =0.

n— 00

Note. You do not have to prove N7, A,, = (§, but be sure you understand
why the result holds. The explanation is given below.

e To see that NS, A, = 0, note that if there exists w € N2, A4, we
must have X (w) < —a,, for all n. Since lim,, o, —a, = —00, X (w) =
—0o0, which is impossible since X takes values in R. Therefore, there
is no point in N2, A,,. That is, N2>, A,, = 0.

We will show that @ is a probability function defined on F by verifying
the following;:

(a) Q(A) >0forall Ae F.
(b) Q@) =1.

(c) Suppose that {4, }72, is a sequence of disjoint events in F, then
o)
Q( ?zozlAn) = Z Q(An) (10)
n=1
e For (a), note that P is a probability function on F, so Q(4) =

P(A|B) = P(ANB)/P(B) > 0 since P(B) > 0 and P(ANB) > 0.
e For (b), Q(Q) = P(Q|B) = P(QNB)/P(B) = P(B)/P(B) = 1.



e For (c), suppose that {A,}52 is a sequence of disjoint events in F,
then {A, N B}52, is also a sequence of disjoint events in F, so

P(U= (A, N B)) = i P(A, N B). (11)

Compute Q(U2; A,,) using the definition of @) and we have

Q( q(;ozlAn) = P( Z":lAnlB)
P(BN(UpL14,))/P(B)
= P( ~ (A, NB))/P(B)

n=1

= (ZPA mB)

) n=1
P(A,NB)
P(B)

n

:ZA|B§_O:

n=1

Il
MM?% W

o (10) holds.

12. (a) F(0) =lim, .o+ F(z) = lim,_,o+ (0.5 + 0.52) = 0.5.
(b) F(1) =lim, yy+ F(z) =lim, ,;+ 1 =1.
(¢) From the definition of F, it is clear that F' is continuous at every
point that is not in {0,1}. Therefore, for a € R, P(X = a) = 0 for
a ¢ {0,1}. It remains to compute P(X = 0) and P(X = 1). Direct
calculation gives

P(X=0) = F(0)— lim F(z)

x—0~

= 0.5— lim 0=0.5—-0=0.5,

z—0~

and

P(X=1) = F(1)- lim F(x)

r—1—

= 1— lim (0.54+0.52) =1—1=0.

r—1—

PO<X<1) = PO<X<1)+P(X=0)
= F(1)— F(0)+0.5
= 1-05405=1.

Here we have used the result that P(X = 0) = 0.5 (from Part (c)).

(e) From Part (c), we have that P(X = a) =0 for a # 0 and P(X =
0) = 0.5. If X is discrete, then 0 is the only possbile value of X and
we must have P(X = 0) = 1, which contradicts with the fact that
P(X =0) = 0.5. Therefore, X is not discrete.



13.

14.

15.

Let Sx = {z : fap(x) > 0} = (a,b), then

{(x—a)/(b—a):x € (a,b)} =(0,1).

Solving y = (x —a)/(b—a) for x gives x = a+ (b—a)y. For y & (0,1), let
fy(y) =0, and for y € (0,1), let

b

Fr () = Fas (a + (b— a)y) ]j; (at (b—a)y)

then fy is a PDF of (X —a)/(b—a). The expression of fy can be further
simplified: for y € R,

@) = Ton(®) - faplat (- ay) \jy (a+ (b a>y>]

= Lon®) g Tanlat (b ay) - (b—a)
Lo,1)(¥)  L(apy(a+ (b—a)y)
= Lon(y)
Let Sx = {z : fx(x) > 0}, then Sx = (0,00) and
WV ia e (0,%)} = (0,).
Solving y = 1/ for x gives = y2. For y € (0, 00), let
)

and for y ¢ (0,00), let fy(y) = 0, then fy is a PDF of Y = v/X. The
expression of fy can be further simplified:

fr) = fx?)

)

@) = Ioe®) - fx©?) d%(zf)

22
= T(0.00)(¥) - 2% W) I g 00) (%) - [29]
4
= I(O,oo) (y) '4y367y

for y € R.

Let Fy be the CDF of Y = X2. We will find Fy first. For t < 0,
Fy(t)=P(X?<t)=0. Fort =0,

Fy(0)=P(X?<0)=P(X =0)=0
since X has a PDF. For t > 0,

Fy(t) = P(X*<t)
= P(—Vt< X <VH)
0 Vi
= / (—x)dx+/ 0.5e"%dx
-Vt 0
Vi Vit
(u=—-x) = / udu+/ 0.5 *dx
0 0
¢ L0.5e~ VY
2
y=u“y==x = /0.5dy+/ dy. 12
( )= v (12)



Take
s = (54 17) Lo (13)

for y € R, then for ¢ > 0,

[ rwa=[ (5+ Mg) ay 2 By (),

and for t <0,

¢
/ f(y)dy =0 = Fy (t).
—0o0
We have verify that
¢
| fway=re
for all t € R, so the f given in (13) is a PDF of Y.
16. (a)
P(X>2) = 1-P(X<2)
= 1-F2) =1-(1-et=e"
(b) Note that
Fl(z) = —(1 —e™27) = 2%
for z > 0 and F'(z) = 0 for < 0. Let f(z) = 2¢™2"I(g o) (2) for
x € R. We will show that f is a PDF of X by verifying
t
PO = [ fa)ds (14)

for t € R. Note that for ¢t <0, ffoo f(z)dxr = 0 since f(z) = 0 for
x <0, and F(t) =0 for ¢ <0. Thus (14) holds clearly for ¢t < 0. For

t>0,
t t
dr = 2e")d
| tan = [ e

= (_e_h)”i:o
= 1—e?=F(t),

so (14) holds for t > 0 as well. Since (14) holds for all t € R, f is a
PDF of X.

17. (a) Let F' be the CDF of X, then for ¢t € R,
Fit) = P(X<t)

t 2
= / 2ze™" I (0,00 (7)dz

t 2
= I(Opo)(t)~/0 2xe™ " dx

2

= T (t)- (1—e").



(b) For a € (0,1), solving F(t) = a for t gives e* = 1—q and t =
—1In(1 — a), so the median of the distribution of X is

VvV —=In(1 -0.5) = /In(2)
and the IQR (interquartile range) of the distribution of X is
V=In(1 —0.75) — /= In(1 — 0.25) = /In(4) — v/In(4/3).

18. (a) Let F be the CDF of Y = g(X). It is clear that g(z) < 0.5 for every
x € R, s0 F(0.5) = P(9(X) <0.5) =1and F(t) =1 for t > 0.5. For
t < 0.5,

F(t) =

T

(Y <t)

P(g(X) <tand X <0.5)+ P(g(X) <t and X > 0.5)
(X
(X

| /\

Il
"U

and X <0.5)+ P(0.5 <t and X > 0.5)

<t
= P(X <t)+ Ijg.5,00)(t)P(X > 0.5)

- / e " I(g,00) (2)dx

oo

t
= I(O,oo)(t) / e *dx
0

2o (1—e")I,0.5) ().

From the above calculation, the CDF of Y is F, which is given by

F(t) = (1= e 0,05 (t) + Io.5,00)(t) (15)
fort € R.
(b) Y cannot have a PDF since

P(Y =0.5) = P(X >0.5) = / e “dx > 0.
0.5
(c) The CDF of Y is the F given in (15). From (15), F(t) =1 > 1—e~ 0%
for t > 0.5 and for t < 0.5, F(t) = 1 — et <1 — e 95 Therefore,
0.5 is the quantile of order (1 — e™%%) of the distribution of Y.

19. (a) Let p = E(X), then by definition,
Var(X)

sl

(X —p)?

E(X? —2uX + p?)
(
(

= B(X?)+ B(-2pX) + E(u?)
E(X?) —2u E(X) +p?
——

(b) Let Y = X — E(X), then ¢X — E(cX) =cX — cE(X) =Y, so
Var(cX) = E(cX — E(cX))?
= E(c°Y?)
= FPEY?) =cAVar(X).



20. (b) Note that

B0 = [ s

where
& 1
/ T < > dx
1 222
b
= lim —dx
b—oo Jq 2z
In(b)
- jim 75 = 19
and
-1
1
-1
1
= lim —dx

so F(X) cannot be defined.
(a)

E(X - I,00) (X)) =

|
g

8
Py
=
k3
=
=
<
&

jsW

8

50 X - I(0,00)(X) is not integrable.

21. We will first state and prove the result in Fact 1 to simplify lim,_,q+ P((X,Y) €
(w0, o + ) X (Yo, yo + h))/h* and limy, o+ P((U, V) € Ry,)/R*.

Fact 1 Suppose that f is a real-valued function that is continuous on an
open set O in R? and (zo,y0) € O. Suppose that {4, : h > 0} is a
collection of regions in R? such that for e; > 0, there exists 6; > 0 such

that
h € (0,01) = (z0,%0) € An C B((z0,90),€1), (17)
where
B((zo,y0),e1) = {(x,y) € R* : ||(z,y) — (zo,90)|| < 1},
then

I fAh, f(z,y)d(z,y)
hso+ J4, 1d(@,y)

= f(wo,%0)- (18)

10



Proof of Fact 1. Since f is continuous at (zg,yo), for €2 > 0, there exists
62 > 0 such that

1z, y) = (z0,90)l| < 02 = [f(2,y) = [ (20, y0)| < £2/2. (19)

By assumption, there exists d; > 0 such that (17) holds with &; replaced
by d2. Thus

h € (0761) = (x07y0) € Ah C B((Z‘(), ZJO)7 52)
(19)

= |f(z,y) — f(wo,y0)| < £2/2 (20)
=
fAh f(ZL', y)d(:ﬂ, y)
fA Ld(z y) — f(wo,y0)
fAh (x ) ( 7y)
f ld(z,y)
fAh |f(z,y) — f(x0,y0)ld(z,y)
Ja, 1d(@,y)
(20)
< 82/2 < €9.

In summary, we have shown that for e, > 0, there exists d; > 0 such that

S, F@y)d(z,y)
fAh ld(z,y)

h S (0761) = - f(m07y0) < &g,

so (18) holds and the proof of Fact 1 is complete.

Next, we simplify lim,_o+ P((X,Y) € (zo,z0 + h) X (yo,y0 + h))/h*.
Apply Fact 1 with f = fxy, (w0,50) = (%0,%0) and Ay = (0,70 + h) X
(y07 Yo + h)7 we have

f(xo,aco+h) x (yo,yo+h) JPX,Y(QJ7 y)d(az7 y)

lim = fx,v(%0,%0)- (21)
h=0% f($07$o+h)><(y07yo+h) 1d($7 y)
Since
i POGY) € (20,20 ) % (0,0 + 1)
h—0t h?
— 1 f(loﬂvo-‘rh) X (yo,y0+h) fX’Y(x’ y)d(x, y)
1m
h—0t h?
— lim f(Io,Io+h)X(y0,y0+h) fX,Y(-ryy)d(xay) . lim f($0,10+h)><(yo,yg+h) 1d($7y)
h=0t f(mo,ro-&-h)x(yovyo-*-h) ld(z,y) Gl i
=1
=fx.,v(z0,y0) Dy (21)
we have

P((X,Y) € (zg,z0 + h) X (y0,y0 + h))

B O h2 = [x,v (2o, ¥0)- (22)

11

)



Next, we simplify lim;,_,q+ P((U,V) € Ry)/h?. Apply Fact 1 with f =
fuv, (xo,y0) = (ug,vo) and Ay = Ry, we have

th fuv(u,v)d(u, v)

1i = . 23
hgf)l*- th 1d(z,y) fuy (uo,vo) (23)
Since
lim P((U,V) € Ry)
h—0t h?
. th nyv(u,U)d(u,’U)
= lim
h—0t h2
. fR fU,V(va)d(U,@ . fR 1d(u,v)
= 1i h lim h
h—0+ S, 1d(u,v) h—0+ h?
=fuv(uo,v0) DY (23)
and
/ 1d(u,v)
Rp,
= the area of the parallelogram ABCD
2
AB . AD
= |AB| - |AD| - J 1- <ﬁ—7r>
|AB| - |AD|
— IAB||AD 2 - (4B - 4Dy,
where
E (uo + ug (0, Yo)h, vo + vz(xo, yo)h) — (uo, vo)
= h- (uz(®0,%0), vz (20, Y0)),
fﬁ (1o + uy (0, yo)h, vo + vy (20, yo)h) — (1o, v0)
= h- (uy(anyo)vvy(x()vyO))a
and
|AB|?|| AD|? - (AB - AD)*
= B?[(ua(0,40))* + (va (w0, 90)*)] - B [(uy (20, 50))* + (vy(20,50)%)]
—[hz(uz(xo,yo)uy(xmyo) + Um(ffo,yo)vy(xmyo))]?
= h*ua (0, Yo)vy(T0s Yo) — vz (20, Yo)uy (T, o) |,
we have
h—0t h?
) th 1d(u,v)
= Juvlvovo) i T
h4 €T ) 9 - Ux ) ) 2
= fuv(uo,vo) lim \/ [uz (70, yo)vy (20, Yo) — v (Z0, Yo)uy (o, Yo)|
’ h—0+ h?
= fU,v(uo, vo)|um($o, yO)’Uy(xOvyO) - Ux(wo, yo)uy(%,yo)|~ (24)

12



From (22), (24) and the result that

lim P((X,Y) € (xo,z0 + h) X (yo,y0 + h)) — lim P((U,V) € Rh)7
h—0+ h? h—0+ h?

we have

fX,Y(iCOJJO) = fU,V(UOa vo) [tz (2o, yo)vy(fo,yo) — Ve (o, yO)“y(anyO”-

Since
um(9307 yo)Uy(SCm yo) - Um(l’m Z/O)Uy(fto, yo)

is the determinant of J(zo,yo), we have
fx,v(xo,y0) = fu,v(uo,vo) - | determinant of J(zo,yo)| -

22.

E(Y) = E<X_“>

X —
Var(Y) = Var ( N)
o
1
= gVar(X — 1)
Var(X) o2
- oz o2 L
23. Note that for a positive integer k,
d* o k2t
art Tre
and .
d
—0.6=0
dtk ’
so for k € {1,2,3,4},
ﬁM (t) =0.4-2%. ¢
ik '
and
dk
E(XF) = —Mx(t)] =0.4-2F (25)
dtk 0

which gives E(X) = 0.8, E(X2) = 1.6, E(X3) = 3.2, and E(X%) = 6.4.

Below is another approach for finding

13



Apply the result that
k

al
e’ = g —
k!

k=0

for x € R, we have

Mx(t) = 0.6+ 0.4 (1 + i (2]:!)k>

k=1

for t € R. Therefore, for k > 1,

dk
dtk

k

2
=kl-04-= =04-2F

M (®) kL

t=0
so (25) still holds and the E(X") values remain the same as those com-
puted above.

24. Let My be the MGF of Y, then

My(t) = E(Y)
= "P(Y =0)+e2P(Y =2)
= 1-0.6+¢*-0.4=Mx(t)
for t € (—o0,0), where Mx is the MGF of the random variable X in

Problem 23. Since Y and X have the same MGF, they have the same
distribution.

25. (a) The random variable X’s distribution is the Poisson distribution with
mean A, so X has PMF px, where

e NE/kLif ke {0,1,2,...};
px (k) = { 0 otherwise.
Let Mx be the MGF of X, then
Mx(t) = E(e")
> A
_ th —X
= Ze ¢ %l
k=0
> t\k
- (Ae')
= e
k=0
— —Aeket — eA(et—l)

for ¢ € (—o0,00).
(b) From Part (a), Mx(t) = e*¢' =D for t € (—o0, 00). Since

d d ¢ ¢ d
- 1) = — (e —1): A(e —1)7)\ t_l :AtM t
aMx®) = e ‘ ¢ 1) =AM ()

and

d
%)\etMX (t)

= Mx (t)%()\et) - ()\et)%MX (t)
= (Ae")(Mx(t) + MK (t))

>
—
~
=
|

14



for t € (—o0, 00), we have
E(X) = M5 (0) = X’ Mx (0) = A
and
E(X?) = My (0) = (Ae”)(Mx (0) + M’ (0)) = A(1 + N).
Therefore,

Var(X) = E(X?) — (E(X))? =AM1+X) = X2 =\

26.

My(t) = B(e)
E(eta . eth)
_ etaE(eth)

etaMX (tb)

for |tb] < h. If b# 0, then [tb] < h <t € (=h/|b|,h/|b]). Thus if b # 0,
My (t) = €' Mx (tb) < 0o
for t € (—h/|b|,h/|b|).
27. (a) Fort € R,
Mz(t) = E(?)
= [ e

oo

> 1 2
_ etziefz /2dZ
[m V 27T
T vz e
= / e \? -et /%dz

27
05" / fr1(z)dz.
Since f;1 is a PDF, the integral ffooo fe1(2)dz =1 and we have
o0 2
My(t) = / ¢ fo (2)dz = O (26)
—o0

fort € R.
(b) Note that

fort € R, so

15



(¢) We will show that Y and Z have the same distribution by verifying

that they have the same MGF. Let My be the MGF of Y, then

My(t) = E(ety)
E(et(X—u)/a)

otle—m)/o o~ @12/ (20%) g

(2:6) 60.5t2 _ MZ (t)

for t € R. Since Y and Z have the same MGF, Y and Z have the
same distribution.
Since Y = (X — p)/o, we have X = p+ oY . Let Mx be the MGF
of X, then
Mx (t) = E(e)
— E(et(quUY))

Problgm 26 i My (to)

Part (a) ot g0-5(t0)?

— e#t+0.502t2

fort € R.
To compute E(X) and Var(X), note that
d 242
M/ t — 7 ut+0.50t
x (1) at©
_ o Ht40.507¢ i 242
e o (ut +0.50%1%)
:Mx(t)

— Mx(t)(u+0%)

and
Mx(t) = %(Mx(t)(,quUQt))
= M) (u+ o%t) + Mx(t) - 02,
E(X) = M (0) = Mx(0)- (,u—&—azt)’t:()u:u (27)
and B
E(X?) = M¥(0) = Mk (0) - (n+ 0’t)|,_, + Mx(0) -0 = p* + o2,
(2:7)# =1

which gives

Var(X) = E(X?) - [E(X))? = p® + 0% — u? = o2

16



28. (a) Let H(x) = (1 — e ®)Ij00)(x), then
Fx y(z,y) = 0.5G(z)G(y) + 0.5H (z)H (y)
for (z,y) € R? and
PlO<X<landl<Y <2)
=Fxy(1,2) — Fxy(0,2) — Fxy(1,1) + Fx y(0,1)
= 0.5G(1)G(2) + 0.5H(1)H(2) — [0.5G(0)G(2) + 0.5H (0)H (2)]
—[0.5G(1)G(1) + 0.5H (1) H (1)] + 0.5G(0)G(1) + 0.5H (0)H(1)
=0.5(G(2) = G))(G(1) = G(0)) +0.5(H(2) — H(1))(H(1) — H(0))
=051-1)(1-0)+051-e?—-(1—-eH))(1-et=(1-1))
= 05e " —e ?+0.5e".
(b) Let Fx be the CDF of X, then
Fx(z) = ylggo Fxy(z,y)

= lim (0.5G(z)G(y) + 0.5H (x)H(y))

Y—>00

for z € R. Since

lim G(y) = xli_)ngo(ﬂ(o,n(fc) + Iio0y () =1

Y00
and
Jim H(y) = lim (1= e™)]jp 00)(2) = 1,
we have
Fx(z) = yli_)r{.lo(ObG(x)G(y) +0.5H (xz)H(y))
= 0.5G(z) +0.5H(z)
= 0.5(xl0,1)(®) + I1,00) () +0.5(1 — e ) 10,00y ()
= (052 +0.5—0.5¢""))I(g,1y(x) + (1 = 0.5 ) [11 o ()
for x € R.
29. Since

P((X,Y,Z) € (a,b] x (c,d] x (e, f])
= P(X,Y) € (a,b] x (¢,d] and Z < f)
—P((X,Y) € (a,b] x (¢,d] and Z < e) (28)
We will first express P((X,Y) € (a,b] x (¢,d] and Z < z) using the joint
CDF of (X,Y, Z). Note that for z € (—o0, 00),
P((X,Y) € (a,b] X (¢,d] and Z < z)
= P(Xe€(a,bandY <dand Z < z)
—P(X € (a,b] and Y < cand Z < 2) (29)
and for y € {c,d},

P(X € (a,bl and Y <y and Z < 2)
= P(X<bandY <yand Z < 2)

—P(X<agandY <yand Z < z2)

=F(b,y,z) — Fla,y,2),

17



30.

0 (29) becomes
P((X,Y) € (a,b] x (¢,d] and Z < 2)
= F(b7d7 Z) - F(bﬂ G Z) - (F(av d, Z) - F(av G, Z)) (30)
for z € (—o0, 00). In (28), replace each probability of the form P((X,Y) €
(a,b] x (¢,d] and Z < z) (z = e, f) with the CDF expression in (30), then
we have
P((X,Y, Z) € (a,b] x (c,d] x (e, f])
= F(bvd’f) 7F(b7cvf) - (F(a7d7f) 7F(avcvf))
—(F(b,d,e) — F(b,c,e) — (F(a,d,e) — F(a,c,e)))
= F(bd, f)—F(bc,f)—F(a,d, f)+ F(a,c, f)
—F(b,d,e) + F(b,c,e) + F(a,d,e) — F(a,c,e).

1 = /szX,Y(-T7y)d(xay)

1,1

/ / cxdydx
o Jo

1 1

/ cx / ldydx
0 0

1

= / cxdx = ¢/2,
0
so ¢ = 2.
(b)
P(X+2Y)<1) = / fxy (@ y)d(z,y)
{(z,y):x+2y<1}
— / 2zd(x,y)
{(J;,y)::};-ﬁ-QySl}ﬂ(O,l)X(O,l)
/2 p(1-2y)
= / / 2zxdxdy
0 0
1/2 1
= / (1-2y)*dy = —.
0 6
(c) Let

fr(y) = /_OO fxy(z,y)dz

for y € (—o0,00), then fy is a PDF of Y. Note that for y € R and
Yy ¢ (Oa 1)7 fX,Y(xay) = Oa S0

/ fX,Y(‘T7y)dx:0

for y & (0,1). In addition, for y € (0, 1),

oo 1
/ fxy(z,y)de = / 2xdx = 1.
oo 0

18



Therefore,

fr(y) = /_ Frr (@ gz = Lo (y)

for y € R.
31. Let - -
21 :/ g(z)dz and ¢ :/ h(z)dz,
then
= d = e h(y)dzdy = . 3
1= [ rovewden = [ [ s@hesdy = en. 6y
Let - -
fx@) = [ ferledn = [ g@h)dy = eagls)
for z € R and
o) = [ feviewdns= [ glohlds = einty)

for y € R, then fx and fy are PDF’s of X and Y, respectly, and

Fx (@) fy (1) = cag(@)erh(y) D g@)h(y) = fxy (@,y)
for (z,y) € R%

32. Let
A, ={weQ: X(w) <zand Y(w) <n}

for n > 1, then it is clear that
A, CApyq foralln>1 (32)

and it can be shown that

A, ={weQ: X(w) <z}, (33)
o)
lim P(X <zandY <y) = lim P(X <z and Y <n)
Yy—00 n— 00
= o P
= PUzR A

= PHwe: X(w)<z})=PX <uz).

Below we will prove (33). Note that it is clear that
A, C{w e X(w) <z} (34)
since for every n > 1,

Ap={we: X(w)<z}n{we Q:Y(w) <n} C{we: X(w) <z}

19



33.

Therefore, to verify (33), it remains to show that
{weQ: X(w) <z} CUZ A,. (35)

To see that (35) holds, note that for w € {w €  : X(w) < z}, there must
exist a positive integer m such that

Y(w) <m,
otherwise we cannot have Y (w) € R. Thus

we{weN: X(w) <z}

=w € O, X(w) <z and Y(w) < m for some positive integer m
= w € A,, for some positive integer m

=we U A,

Therefore, we have verified (35). Since both (34) and (35) hold, we have
{weQ: X(w) <z}=Usl 4,
and (33) holds.
(a) The set {(z,y) : fx,y(z,y) >0} is (0,00) x (0,00). Let
Suy = [V T 42, tan~1(y/2)) s (,) € (0,00) x (0,00)}.

We will first show that

Suw = (0,50) x (0,7/2) (36)
by verifying that

Su,v € (0,00) x (0,7/2) (37)
and

(0, OO) X (O,W/Q) C SU7\/. (38)

To verify (37), suppose that (u,v) € Sy,v. Then by the definition of
Su,v, there exists (z,y) € (0,00) x (0,00) such that

1=y )

v =tan"t(y/x).

Since (39) holds and (z,y) € (0,00)% (0, 00), we have u = /22 4+ y2 >
0 and v = tan~(y/z) € (0,7/2), so (u,v) € (0,00) x (0,7/2). The
verification of (37) is complete.

To verify (38), suppose that (u,v) € (0,00) x (0,7/2). In such case,
solving (39) for (x,y) € (0,00) x (0,00) gives

x = ucos(v);
{ y = usin(v). (40)

Since (u,v) € (0,00) x (0,7/2), the (z,y) in (40) satisfies (z,y) €

(0,00) x (0,00) and (39) holds for the (x,y) in (40). Therefore,

(u,v) € Sy,v. The verification of (38) is complete.

From (37) and (38), we have (36).
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For (u,v) € (0,00) x (0,7/2), let J(u,v) be the determinant of the
Jacobian matrix of  and y as functions of (u,v) given in (40), then

el 0
J(u,v) = determinant of %u c9s(v) aéfu C.OS(U)
Feusin(v)  S-usin(v)

= determinant of cos(v) —usin(v)
sin(v)  wucos(v)

= wcos’(v) — (—usin?(v)) = u.

For (u,v) € R?, let

o) = { Pvtueostel sl e ) S
| fxy(ucos(v),usin(v))|u| if (u,v) € (0,00) x (0,7/2);
10 otherwise,

then fyy is a PDF of (U, V). Note that

(u,v)(0,00) x (0,7/2)
(ucos(v),usin(v)) € (0,00) x (0,00)
)
(

4o

fx,y (ucos(v), usin(v))|u|
= ce ((ucos(v)) +(usin v)) )/2U

—u?/2

=ce u,

so the expression of fi;y can be simplified as follows:

=2y if (u,v) € (0,00) x (0,7/2);
otherwise.

ot ={

(b) For v € (—00,00), let

fv(v) = / fov(u,v)
_ Jo e udu=c ifve (0,7/2);
0 otherwise,
= cloqx/2)(v)

then fy is a PDF of V.
(c) Since 1 = [%_ fy(v)dv = Oﬂ/z cdv = e /2, we have ¢ = 2/7.
34. (a) Let Mx y be the joint MGF of (X,Y), then for s < 1, ¢t < 1,
Mxy(s,t) = BE(es*TY)
= / e fx v (@, y)d(x,y)
RZ

= sT+ty # a—1 [—371 1y>d
/(0 oo)><(Ooo ‘ <I‘(a)I‘(ﬁ)z y (z,y)

_ / / —(1 s)x e 1 —(1 t)y [3 1d$dy
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Note that for tg < 1 and a > 0,

/OO 67(17t0)zxa71d$
0

a—1
o z 1
1 = (1 — = -z
(let z = (1 —t9)x) /0 e (l—to) 1_t0dz

=(1—1)" /000 e 7?2 Yz = (1 —ty) "°T(a).

Apply the above reslut with (a,tg) = (o, s), (8,t), then we have

/ e~ (=) a1 (1-9)"T(a) for s < 1
0

and o
/ e~ (=01 — (1 — t)=PT(B) for t < 1.
0

Thus the expression of Mx y(s,t) can be simplified as follows: for
s<1,t<1,

MX7y(S,t) — / / (1—-s)z o 1 7( 7t)yy571dxdy
- - e—(l t)y, B—1 - (q
— ] Ty
_ L g [T mamny, s
_ L a_peaops

= (1-s)1—1)"

It is clear that the function M given in the problem is the same as
Mx y, which is the MGF of (X,Y).

(b) Let Mx be the MGF of X, then Mx(s) = Mx y(s,0) = (1 —s)™®
for s < 1.

2
(¢) To find E(XY), we will first compute %Mxvy(s,t) since
s
82
E(XY) 950 Mxy(s t) .
t (5,:6)=(0,0)
Note that
0 7]
—M t) = =—(1-s) 71—t~
D5 x,v(s:t) 83( s)~( )
d
= 1-t)P—(1-s5)""
(-0
= (1-t)Pa(l—s)",
S0
82 8 —a—1
%M)Qy(s,t) = 8t(1_t) all —s)

= ol - s)*G‘*l%(l — t)*ﬁ
= a(l—-s)"71p —t)"#7L



Therefore,

E(XY)=a(l-s)"*18(1 - t)7ﬁ71|(5,t):(0,0) =af

E(X) = 2]\4)(,}/*($,t) = (l—t)ffgoz(l—s)
s (5,£)=(0,0)

Remark. To find E(X), we can also compute M the derivative of
the MGF of X. From the solution to Part (b), we have Mx(s) =
(1—5)"% so

My (s) = %(1 —5) *=aqa(l—s)7!

and E(X) = M%(0) = .

35. From the solution to Problem 34 (a), the joint MGF of (X,Y) is Mx y,

36.

where

Mxy(s,t)=(1—s)"(1—t)"" fors<1,t <1, (41)
For a > 0, let M, be the MGF of a random variable whose distribution is
T'(a, 1), then from the solution to Problem 34 (b), we have for every a > 0,

M,(t)=(1—-t)"fort < 1. (42)
Let Mx,y be the MGF of X + Y, then for t < 1,
Mxyy(t) = B(eX)
=  Mxy(t,1)
o ea-ne
(1-— t)—(a+ﬁ).

Since Mx 1y is the same as the MGF M, in (42) with a = o+ 8 on
(—00,1), the distribution of (X +7Y) is I'(aw + 3, 1).

(a) Let A= {(x,y) : (x +2y) > 0}, then

P((X +2Y) > 0) = /A fxy (2, y)d(z,y)

u=et2y,v=r=2y / el (u,v)|d(u, v),
(0,2)x(—2,2)

where
0 ut+v 9 utw
J(u,v) = deteminant of ( G 2 %”uzv)

Ju 4 v 4
1 1

= deteminant of | # 2 >
4 4

1 1 1 1

o2\ 4 2 4

1
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SO

P((X +2Y) > 0)

fd(u )
/o 2)x(~2,2) 4

/ /  dudu

(b) Since
1= [ fxrlemdon) = [ s,
we have
-
- =
- / 1d(z, y)
{(z,y):—2<(z+2y)<2 and —2<(z—2y)<2}
u= x+2yv r—2y / u v)‘d(u’ v)
(—2,2) x( 22)
(43) /
= fd(u,v)
22y 4
= / 1dvdu =4,
o/ 04
soc=1/4.
37. (a) To find E(X|Y), we will first find a version of the conditional PDF

of X given Y. For y € (—o0, 00), let

-/ " fay (e y)de

Ry ={y: fr(y) > 0}, and

fxy(@y)
fr(y)

for y € Ry, then {fx|y—y : ¥y € Ry} is a version of the conditional
PDF of X given Y.

To compute fy, note that the region S is the interior of the parrallelo-
gram with vertices (—2,0), (0,1), (2,0) and (0, —1), so for (z,y) € S,
we have y € (—1,1) and fy(y) =0 for y € (—1,1). In addition, given
Y€ (_17 1)a

Ixpy=y(z) = (44)

(x,y) €S
el Y Bl w
S)
0 ify>1lory<—1;
fr(y) =< [230, cdu=dc(l+y) if —1<y<0; (46)
2;42-:; cdr=4c(l—y) if0<y<l.
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38.

From (46), it is clear that Ry = {y : fy (y) > 0} =

(—1,1).

Next, we compute fx|y—, using (44) for y € (—1,1). From (45) and

(46), we have that for y € (—1,0],

_ 1
T 4(+4y)

C
fX‘Y:y(x) = { Sc(1+y)
and for y € (0,1),
1
4(1-y)

fX|Y:y(m) = { Sc(l—y) =

Therefore, for y € (—1,1),

if v € (—2 —2y,2+ 2y);
otherwise,

if x € (—2+2y,2 — 2y);
otherwise.

BEX)Y =y) = / T fx|y=y(z)dz
2+2 .
_ { ng4(1+y)d:r—0 if —1<y<O0;
122 pioy Az =0 HO0<y<1,
= O’
which implies that E(X|Y) = 0.
For y € (—1,1),
Var(X[Y =y) = B(X?|Y =y) - (B(X|Y =y))
E(X?]Y =y) - 02
= / $2fX|Y y( x)dx
242 = 4(14w)? . )
_ {f22 Zy4(1+y)dx 3y2 if —1<y<0;
- 4(1— : ,
St esde = 205 it <y < 1
(1+ Y2/ i
[ 404Y)2/3 i —1<Y <O
Var(X|Y) = { 41-Y)%/3 o<y <1
We first compute the conditional probabilities P(X = z|Y = —3) to
find E(X|Y = —3) and Var(X|Y = —3). Since
PY =-3) = P(X,Y)=(0,-3)+P((X,Y) = (1,-3))
0.4+ 0.1 = 0.5,
P((X,Y) = (0,-3) 04
P(X =0Y =-3) = =— =038
( | ) P(Y = —3) 0.5 ’
and
P(X =1]Y = -3) = = =02
( | 3) P(Y = -3) 05~ 0%
we have
E(X|]Y = —3) = 0xP(X = 0]Y = —3)+1xP(X = 1|Y = —3) = 0-0.8+1:0.2 = 0.2
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and

Var(X|Y = =3) = E(X?Y = -3) — (E(X|Y = —3))?
= 0*xP(X=0Y=-3)+1?xP(X=1]Y =
= 0-08+1-0.2—0.04=0.16.

Next, we will find E(X|Y = 2) and Var(X|Y = 2). Since
PY =2)=P((X,Y)=(1,2) =0.5,

we have

P((X,Y) = (1,2) 05

PE=IV =2 ="%5 =% ~0 "

and
P(X,Y) = (z,2))

P(X =z|Y =2) = PV —2) =0
for 2 # 1, we have
E(X[Yy =2)=1xP(X =1y =2)=1
and
Var(X|Y =2) = E(X?Y =2)— (E(X|Y = ))

PxPX=0Y=2)—(1)?*=
—
=1
In summary, we have
E(X]Y)=02[;_5(Y) + I12;(Y)

and
V(M’(X|Y) = 0.16]{_3} (Y)

To find E(Var(X|Y)), note that Var(X|Y) can be 0.16 or 0 with
probabilities P(Y = —3) and P(Y = 2) respectively, so

E(Var(X[Y)) = 0.16x P(Y =—3)+0x P(Y =2)
0.16 x 0.5 = 0.08.

To find Var(E(X]Y)), note that E(X]Y) can be 0.2 or 1 with prob-
abilities P(Y = —3) and P(Y = 2) respectively, so

B(E(X|Y))? = (0.22xP(Y =-3)+12xP(Y =2)
= 0.04 x0.5+1x0.5=0.52
and
E(E(X|Y)) = (02)xP(Y ==3)+1xP(Y =2)
= 02x05+1x0.5=0.6,
which gives

Var(E(X|Y)) BE(E(X|Y))? - (E(E(X|Y)))?

0.52 — (0.6)% = 0.16.
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To find Var(X) using the joint PMF of (X,Y"), note that
E(X?)=1>x05+0%>%x04+ 12 x0.1=10.6

and
E(X)=1x0540x044+1x0.1=0.6,

so Var(X) = E(X?) — (E(X))? = 0.6 — (0.6)% = 0.24.
From the above calculation, we have Var(X) = 0.24 and

E(Var(X|Y)) + Var(E(X|Y)) = 0.08 + 0.16 = 0.24,
so the equality
Var(X) = EVar(X|Y)) + Var(E(X|Y))
holds for the (X,Y") in this problem.
39. Let N
fy(y) = [m fxy(z,y)dz
for y € R. Let Ry = {y: fy(y) > 0} and

_ fX,Y(xay)
Iy (y)

Ixiy=y(x)

for y € Ry, then for y € Ry, we have
o0
EwX, V)Y =y) = / u(z,y) fx|y=y(z)dz. (47)

(a) For y € Ry,

(a7)

E(g(X,Y)h(Y)Y =y) /_Oo 9(x,y) x|y =y (z)dzx

= h(y) / ) 9(x,y) x|y =y (2)dx

— 00

D hy)Bgx, Y)Y =),

so E(g(X, Y)hY)]Y) = h(Y)E(g(X, Y)[Y).
(b) For y € Ry,

“n /OO (91(,y) + g2(2, 1)) fx |y =y (2)dw

— 00
o}

- " g1 y) (@) + | o) xv=yfada

—00 — 00

D B (X, V)Y =) + E(ga2(X, V)Y =),

SO

E(g1(X,Y) + g2( X, Y)Y) = E(g1 (X, Y)|Y) + E(g2(X, Y)[Y).
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40. (a)

For (z,y) € R?, let
fxy(@,y) = foa(y) frezya(2),
then fxy is a PDF of (X,Y), and

1 5 1 s e
fxy(zy) = \/72778 0-5y .\/72?6 0.5(z—(1+2y))

L os@y-@-1)? )

2w
_ ie—2.5(y—0.4(z—1))2—O.l(r—l)z
2w
_ 1 e—2.5(y—0.4(a¢—1))2 1 8—0.1(73—1)2
21 /5 V2m-5

- fl,ﬂ(f)f0.4(m71),m(y)

for (z,y) € R%. Since

/ fxy(z,y)dy = / Fr.v8@) o ago1y i W) Y
= f1,\/5(x)
forz € R, f, 5 is a PDF of X.

From Part (a), we have for z € R,

/_ frx (@, y)dy = f, /5()

and

fxy(z,y) fl,ﬁ(m)f0_4(x_1)7\/1/*5(y)

@ G e nin)

for y € R. Thus {f0_4(z_1) Vi T € R} is a version of the condi-
tional PDF of Y given X and

o0

B = [ by sy = 04X - D).
—00 r=X

Here we have used the result that for ¢ > 0 and u € R,

/ Yfuo(y)dy = p

since f, » is a PDF of N(u,0?).

X and Y are not independent. To see this, note that if X and Y
are independent, then E(Y|X) = E(Y) is a constant, which implies
that Var(E(Y|X)) = 0. From Part (b), we have E(Y|X) = 0.4(X —
1), which is a random variable of variance (0.4)?Var(X) = (0.4)? -
(v/5)2 > 0, s0 X and Y cannot be independent.

41. Let px and py be PMF’s of X and Y respectively, and let

px.v(z,y) = px (2)py (y)
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42.

43.

for (z,y) € R%. Since X and Y are independent, py y is a joint PMF of
(X,Y). Let Rx = {z: px(z) > 0} and Ry = {y : py(y) > 0}, then

E@X)Y) = Y Y ul@vypxy(ey)

yERy x€Rx

— Z Z uw(z)v(y)px (z)py (v)

YyERy TERX

= > vy ) < > U(ﬂﬁ)px(fﬂ)>

YyERy z€ERx

E(u(X))

= BuX)) Y vypy(®)

YyERy

E((Y))
—  Bu(X)E(w(Y)).

Let Mxty,x—y be the joint MGF of (X +Y,X —Y), then

Mx iy x—v(ti,t2)
— E(etl(X+Y)+t2(X7Y))

E(e(t1+t2)X+(t1*t2)Y)

=  Mxy(t1 +1t2,t1 —t2)
-t M- (- t) (48)
for (t1,t2) such that t; +t2 < 1 and t; — 3 < 1.
Let Mx_y and Mxy y be the marginal MGFs of X —Y and X + Y
respectively, then from the joint MGF Mx .y x_y given in (48),
Mx_y(t2) = Mx iy, x—y(0,t2) = (1 — t2) (1L + t2) "
for ty € (—1,1) and
Mxiy(t1) = Mxiy x—y(t1,0) = (1 — ty) @A)
for t; € (—o0,1). Thus
Mx iy (t)Mx_y(t2) = (1 — 1)~ (1 = t5)"*(1 + 1) (49)

for (t1,t2) € (—o00,1) x (=1,1). Tt is clear that from (48) and (49),
Mx iy x—vy(t1,t2) and Mxyy (t1)Mx_y (t2) are not the same for all (¢1, t2)
in {(t1,t2) 1 t1 +t2 < land t; —ta < 1} N (—00,1) x (—1,1). Therefore,
X 4+Y and X — Y are not independent.

X and Y are not independent. To see this, note that for discrete random
variables X and Y that are independent of each other, we have that for y
such that P(Y =y) > 0,

PX,Y) = (z,y))
P =y)
P(X =xz)P(Y =vy)

- Py -y =Y

P(X =z|Y =y)
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for all z. In Problem 38, if X and Y are independent, then we must have
PX=0Y=2)=P(X=0)=P(X =0]Y =-3).
However, from the calculation in the solution to Problem 40, we have

P(X =0]Y =2) =0 and P(X = 0]Y = —3) = 0.8. Since P(X = 0]V =
2) # P(X =0|Y = —3), X and Y cannot be independent.

44. For x € {z1,...,2m}, let
p(z) = P(X = z[Y = y1),

then by assumption, P(X = z|Y = y;) = p(z) for j € {1,...,n}. Thus

for x € {x1,...,2m},
PIX=2) = Y. PX=alY =y)P( =)
= Zp(ff)P(Y:yg)

= p(2) ZP(Y =y;) =p(z),

1
and for v € {z1,...,2m}, ¥y € {y1, .-, Yn},
P(X =zlY =y) =p(z) = P(X = 1),
which implies that P(X =z and Y =y)/P(Y =y) = P(X = z) and
PX=zandY =y)=P(X =x)PY =y)

for all z € {z1,...,2m}, ¥y € {y1,...,yn}. Therefore, X and Y are inde-
pendent.

45. (a) Let Z = (Zl,ZQ, Zg)T and
1\ .r
f2(2) = (m) ¢

for z = (21, 20,23)7 € R®, then fz is a PDF of Z since Zy, Zs, Z3
are IID N(0,1) random variables. Let Y = (Y7, Ys,Y3)? and

-1

11 1 1 -1 0
A=[0 1 1 =0 1 -1],
00 1 0 0 1

then Z = AY. For y = (y1,92,y3)" € R?, let

Iy (y) fz(Ay)| det(A)]

3
(5) e iy,
™
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where det(A) is the determinant of A, then fy is a PDF of ¥ =
(Y1,Y2,Y3)T. Since det(A) = 1, we have

o = ()

for y € R3, where
B=ATA=| -1 2 -1

(b) Since
CO’U(Yl,Yg) = CO’U(Zl + Zy + Zs, Z3) = Va’/‘(Z3) =1 75 0,

Y7 and Y3 are not independent. Thus Y; and (Y2,Y3) are not inde-
pendent.

46. We will show that X and Y are independent using the joint MGF of X
and Y. Let Mg y be the joint MGF of X and Y and let Mx, . x, be the
joint MGF of (X, ..., X,,), then for (s1,...,s,) € R",

Mx, . .x,(51,...,8,) = E(elel) e E(eS"X")
n
_ H e;l,s,-—i—0.50'2sl2
=1

= (T 5i) 0507 (T 57
)

and for s € (—o0,00) and t = (t,...,t,)T € R",

My y(s,t) = FesX+Xii, ti(Xi—X)
(F= ti/n) = BelmOXFEL L,
i=1

= MXh__.7Xn(t1+(ani)/n,...,tn+(S*’H,E)/TL)
— (i (tit(s—nd)/n)) L0.50% (7 (ti+(s—nt) /n))?)
— k0507 (T, )+ (s /n)—ni?)

65#60,502(sz/n)eo.502((2?:1 t?)*”{z) (50)

Let Mg and My be the MGFs of X and Y respectively, then for s €
(_007 00)7

My (s) = M y (8, D)li=(o,...opr = e™e”7 (/)
and for t = (t1,...,t,)T € R",
My (t) = Mx (0, 8) = e0-50° (7, t8)—nit?)
Therefore, for s € (—co0,00) and t = (t1,...,t,)T € R",

2.2 = 2 noo42y_ 52
68H60.oo (s /n)eo.oa (> t7)—nt)

Mx(s)My(t) =
(50)
= MX,Y(Sat)a

so X and Y are independent.

31



47. Fort < 1,

1
V2

—O.5(1—t)22d

_ 2
e 0.5z dz

o0
E(etzf/z) _ / 60.51&22
—o0

1 o0
E/_g@e z
_Ver(/ioh) (112
V2r ’

SO
E(et(U/2)) _ E(et(le+--~+Z,2,L)/2)

[E(etzfﬂ)]m (since Zy, ..., Zy, are IID)
= (A-pn)m =102

for t < 1, and the MGF of U/2 is the same as the MGF of I'(a, 1) given
in (42) in the solution to Problem 35 with a = m/2, so U/2 ~T'(m/2,1).

48. Fori e {1,...,n}, j € {1,...,k}, let
Wity s Wim)
be the i-th row of W and let
(b1 bm )T

be the j-th column of B. Then, for i € {1,...,n}, j € {1,...,k}, the
(i,7)-th element of W B is

Wiibi;+ -+ Wimbn j,
so the (7, 7)-th element of E(W B)

EW;1b1j + -+ Wimbm ;)
= E(Wi,l)bl,j + -+ E(Wi’m)bm’j.

Moreover, the (i, j)-th element of E(W)B is also
E(Wi71)bl7j + -+ E(Wi,'rn)bm,j

since

(EWi1),...,E(Wim))
is the i-th row of E(W) and
(b1js- - bmg)"

is the j-th column of B. We have verified that the (7,j)-th element of
E(WB) and the (7, j)-th element of E(W)B are both equal to

E(W’L,l)bl,] + tct + E(Wl,m)bm,J

forie{l,...,n},je€{1,...,k}. Thus E(WB) = E(W)B.
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49. Since
AX — BE(AX) = AX — AE(X) = A[X — E(X)),

the covariance matrix of AX is
E([AX — E(AX)][AX — E(AX)}T) = F(AX - EX)][X - EBE(X
— AB(X - B(X)|IX - B(
— AB(X - E(X)|X — B(X)|T) AT
f

covariance matrix o
= AXAT.

50. Let X = (X1,...,Xn)T and Y = (Y1,...,Y,)T. Let uy = E(X),
py = E(Y), and let ¥x and ¥y be the covariance matrices of X and Y
respectively, then the mean vector of (X7, Y")T is (u%k,u¥)” and the
covariance matrix of (X, Y”)7 is

ZX Om><n
Onxm EY ’
where O, ;, denotes the a x b matrix of 0’s for positive integers a and b.

Let Mx y, Mx and My be the MGFs of (XT,YT)T, X and Y respec-
tively. Then for 8 = (s1,...,8,)7 € R™ and t = (t1,...,t,)T € R",

L X Omn S
mMxy(st) = (s tT)(Zi)m(sT tT)<onfm Sy )(t)
1/ s's t's s
= et (B2 S22 )(7)
xXm Xn

1
= sTpuy +tTpuy + 3 (sTExs +t'Eyt)
= In MX7Y(S7t)|t:(07___0)T + In MX,Y(S’t”s:(O,...O)T
= lnMx(S) + thy(t),
s0
Mx y(s,t) = Mx(s)My (%)
t

for all s = (s1,...,8m)7 € R™ and t = (t4,...,
that X and Y are independent.

»)T € R™, which implies

51. (a) Since the distribution of (X,Y, Z)7 is a multivariate normal distri-
bution and for a constant b € R,

X (1 00 §
Y-bx )=\ b 1 0 P

the distribution of (X, Y —bX)7 is a multivariate normal distribution.
In such case,

Y — bX and X are independent
& Cow(X,Y —bX)=0
< Cov(X,Y) —bCou(X,X) = 0.
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Take
_Co(X,Y) 2 1
- war(X) 10 5’
then Y — bX and X are independent.

(b) Since the distribution of (X,Y, Z)T is a multivariate normal distri-
bution and for constants ¢, d € R,

X 1 0 0 X
Y = 0 1 0 Y |,
Z —cY —dX —d —c¢ 1 A

the distribution of (X,Y,Z — ¢Y — dX)7T is a multivariate normal
distribution. In such case,

Z —cY —dX and (X,Y) are independent
< Cov(X,Z—cY —dX)=0and Cov(Y,Z —cY —dX) =0
( Cov(X,Z) ) _ ( Var(X) Cov(X,Y) ) ( d )

Cov(Y, Z) Cov(X,Y) Var(Y) ¢
Take
(1) = (e i) (a2

B 1 16 —2\(5
- 10-16—-2-2\ -2 10 3
[ T4)156 \ [ 37/78
B 20/156 )\ 5/39 )’
then Z — c¢Y — dX and (X,Y) are independent.
52. For z = (#1,...,2,) € R™, let fz,  z.(2) = foi(z1) - fo1(zn) for
(#1,...,2n) € R", where fo 1 is the N(u,0?) PDF f, , defined in Problem

27 with ¢ = 0 and 0 = 1, then fz, . z, is a PDF of (Z1,...,Z,). Let
H = (/j/la" '7/’[/n)T' For Y= (yla"'ayn)T € Rn7 let

(21(9), -+ 2 (y)T = ANy — ) (51)
and define
fY1 ,,,,, Yn(y)*le ,,,,, Zn(A l(y_/'l’))|<]|a
where
75-21(Y) 3§n 1(y)
a2 o g-2(y)
J=det| . . Oun _ e det(A™1),

then fy, .y, is a PDF of (Y1,...,Y,,). Note that

det(A)det(A™") = det(AA™H) =1
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and

SO

and

det(AAT) = det(A)det(AT) = (det(A))?,

det(A™Y)| = [1/det(A)| = (det(AAT))~1/2,

[0z, (A7 (y — )|

]. " —0 r(,y7 )T( —1)T —1(y7”) -1
—— ) 04 A det(A

1

— ) 0BT (AAT) T (=) (qet(AAT)) /2
=)

for y € R™. Thus fy,,. v, is a PDF of (Y1,...,Y},) that is determined by

AAT and p = (1, ...

53. Since

and

we have

—5(b)

db

d

d
db

—(U — bX)Q}

%S(b) =F [db(U - bX)Q] .

in)

d
—EB(U - bX)?

%E(UQ —20UX +b?X?)

% [E(U?) - 2bE(UX) + b’ E(X?)]

—2E(UX) + 2bE(X?)

E {Q(U - bX)%(U - bX)}

E[2(U - bX)(—X)]
E[-2UX + 2bX?]
—2B(UX) + 2bE(X?),

d

54. Let a = (1,1,1,0)T, then

a’X = (X, 4+ Xy + X3)
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and

(Var(X: + X2 + X3)) = (Var(a” X))

= a'Ya
2 -1.0 0 1
-1 2 00 1

R 1
0 0 0 3 0
2 -10 1

= (1 11)f-1 20 1
0 0 2 1
1

= (11 1)1
2

= ()

55. (a) For (z,y) € R?,
Ixy(z,y) / Ixyz(x,y, 2)dz
— / —(m +azy+5y2) ze % dz
0

(o]
= ce (x*+4zy+5y )/ 2e dz
0

_ e (@t HaaySyY).

Here the last equality follows from

0o b
/ e *dz = hm (—ze=*)|} —|—/ e ?dz | = 1. (52)
0 b—oo 0

For (z,y) € R?, let

fxyz(@,y,2)
fX,Y(xay)
Cef(m2+4my+5y2)zele(o)oo) (Z)
ce_($2+4$y+5?12)
= ze "I, (2)

for z € R, then {fz|(xv)=@z,y) : (T,¥) € R?} is a version of the

conditional PDF of Z given (X,Y).
(b) From the solution to Part (a), fx y is a PDF of (X,Y"), where

Tz1(x.v)=(z,y) (%)

Ixy(z,y) = ce~ (@ H 4oy +5y%)
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for (z,y) € R%. For y € R, let
o0
fry) = / fxy (z,y)de

2 2
— / ce—(m +4xzy+5y )d$
— 00

- /OO ce™ 20" =" gy

— 00

2 > 1 2
= ce ¥ V2105 / e W) gy
—0o V27105

integral of N(—2y,0.5) PDF

= ce ¥ Vm,
then fy is a PDF of Y, so

/ ce ¥ rdy =1

and
1 o -1
VD
1
Ll varos /Oo Ly
= — - 0. —c
N w205 Y
integral of N(0,0.5) PDF
_ 1 1 1
VT V205
Forye R={y: fy(y) > 0}, let
fxy(z,y)
Fyoy@) = X
XY y( ) Jy (y)
B e~ (@+2)* =" I
e v /T
_ L a2
N

for € (—00,00), then {fx|y—y, : ¥y € R} is a version of the condi-
tional PDF of X given Y.

(c) Fory € R, fx|y—y is a PDF of N(—2y,0.5). Let U ~ N(—2y,0.5),
then E(U) = —2y, Var(U) = 0.5,

E(U?) =Var(U) + [E(U)]? = 0.5+ (—2y)% = 0.5 + 432,

EX|Y) = /oo fx|y=y(v)dx

—o0 y=Y

EU)|,—y
= (=2Yly=y = -2V,
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B(X%Y) = /OO 2 fx|y—y(z)dz

oo —y
E(U?),_y

2 _ 2
0.5+ 4y )\y:Y =0.5+4Y?,

and
Var(X|Y) = B(X?|Y) — [B(X|Y)]? = 0.5 +4Y? — (—2Y)? = 0.5.

Since E(X|Y) = —2Y is a linear function of YV, E(X|Y) = —2Y is
the best linear predictor of X based on Y.

Note. Another way to solve this part of the problem is to obtain the
best linear predictor of X based on Y using E(X), E(Y), Var(X),
Var(Y) and Cov(X,Y"). Below we will compute these quantities first.

From Part (b),
1 2
— e
fY(y) \/77_6
for y € R, so fy is a PDF of N(0,0?) with 02 = 0.5 and Y ~
N(0,0.5). Thus

E(Y)=0and Var(Y) = 0.5. (53)
To find Cov(X,Y), we will first compute E(X), E(X?), E(XY):

(53) (54)

E(X) = E[E(X|Y)] = E(=2Y) = —2E(Y)
Var(X) = E(X?)
= EBEX?]Y)]
= E(0.5+4Y?)
= 05+4Var(Y)+ (E(Y))?

= 05+4-05=25, (55)

E(XY) = E[E(XY|Y)]
E[Y E(X]Y)]
= E[Y(-2Y)]
= —2B(Y?)
= —2[Var(Y) +(B(Y))?
(53)

—-2-05=-1. (56)
From (54), (56) and (53), we have
Cou(X,)Y)=EXY)-EX)EY)=-1-0-0=-1. (57)
Let a + bY be the best linear predictor of X based on Y, then
E(X —(a+bY))=0 (58)
and

Cov(X — (a+bY),Y)=0. (59)
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From (58),

(54)(53)

a=E(X)=bE(Y) 0—b-0=0.

From (59),
~ Cov(X,Y) (57)(53) -1
 Var(Y) 05
so the best linear predictor of X based on Y is a + bY = —2Y.

= —2’

56. Let
1

2
— Y /2
for y € (—00,00), then fy is a PDF of Y. Let fx v (z,y) = gy(x)fy (y) for
(z,y) € R?, then fxy is a joint PDF of (X,Y). The expression of fxy
can be re-written as follows:

fxy(zy) = gy(x)fy(y)

L os@y? L 2

V2T v 2
— 1 —y?4ay—0.5z2
27r
— 1 —(y—0.52)%-0.252>
27r

for (z,y) € R%. Let

[ fxy(x,y)dy

1 )2 —0.2522
_ / 76—(11—0.5.11) —0.25x dy
oo 2m

L 02522 = 1
= 027 o,
o ¢ 05 | ros

integral of N(0.5z,0.5) PDF

fx(x)

ef(yfo.Sz)"’dy

1 _ 2
e 0.25x

V2 -2

for x € R and for x € R, let

fX,Y(l", y)
fx(z)
67(y70.5x)270.25m2/(2ﬂ_)
670.25#/1 /97 -2
_ w0y
T

fY|X::r(y) =

for y € R, then {fy|x—, : € R} is a version of the conditional PDF of
Y given X.

57. We will introduce some notation first.
e For p € R, 0 > 0, let f,, denote the PDF of N(u,o) given in
Problem 27.
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For p € RP and ¥: a p X p covariance matrix, let g, s denote the
PDF of N(u,X) given in Problem 52:

1

e 05(@—w) ST @—n) 4 c RP.
(2m)P/2,/det(X) ’

Jus(x) =

We first find the best linear predictor of X; based on X5 and Xj.
Let ag + bp X2 + ¢ X3 be the best linear predictor of X; based on X5
and X3, then we have

COU(Xl — (ao + b Xo + C()Xg),Xg) =0,

COU(Xl — (ao + boX2 + 00X3), Xg) =0

and
E(Xl) = E(CLQ + b0X2 + C()Xg).

Therefore, (by, co) can be obtained by solving

< Var(X;)  Cov(Xa, Xs) ) ( bo ) B < Cov(X1, Xs) )

Cov(Xs, X3) Var(Xs) co Cov(X1, X3)
which is
2 0 bo (-1
0 2 co a 0 ’
which gives by = —1/2 and ¢g = 0. In addition, ag can be obtained
by

apg = E(Xl) - E(b0X2 + C()Xg,) =0- ((—1/2) -040- 0) =0.

The best linear predictor of X; based on X5 and X3 is —X5/2.

Next, we find the best linear predictor of X, based on X5 and X3.
Let ag + bp X2 + ¢ X3 be the best linear predictor of X, based on X5
and X3, then we have

Cov(Xy — (ap + bo X2 + c0X3), X2) =0,

COU(X4 — (ao + b()X2 + 00X3), Xg) =0

and
E(X4) = E(ao + b0X2 + C()Xg).

Therefore, (by, o) can be obtained by solving

(omtity Tt ) (%) - (En503)

(65)(%)-(5)

which gives by = 0 and ¢y = 0. In addition, ag can be obtained by

which is

ag = E(Xl) — E(bng + C()X3) =0-0=0.

The best linear predictor of X4 based on X5 and X3 is 0.

From the above calculation, the best linear predictor of (X7, X4)7
based on X and X3 is (—X2/2,0)7.
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(b) From the solution to Part (a), the best linear predictor of X; based
on Xo and X3 is —Xo/2. Since —X5/2 is a linear function of X5 such
that

OO’U(Xl - (7X2/2),X2) =0

and
ElX1 — (—X2/2)] =0,

—X5/2 is the best linear predictor of X; based on X» with expected
squared prediction error

B(X1—(=X2/2))* = Var(Xi+ X2/2) + [E(X1 - (- X2/2))]?
= Var(Xy) +2Cov(X1, X2/2) + Var(X,/2) + 0
= Var(X1)+ Cov(X1,X2) + Var(Xs)/4
= 24 (=1)+2/4=23/2.

Therefore, a version of the conditional PDF of X; given X5 is {f—x2/2 e 1xg € R}.

(¢) We will first show that the best linear predictor of X; based on
(Xo, X3, X4)T is —X5/2 by verifying

OO’U(Xl — (7X2/2),X2) = 0, (60)
COU(Xl — (—X2/2),X3) = 0, (61)
Cov(X; — (—X2/2), X4) = 0, (62)
and
ElX; - (=X2/2)] = 0. (63)

Note that from the solution to Part (a), —X5/2 is the best linear
predictor of X; based on X, and X3, so (60), (61) and (63) hold.
Moreover, (62) hold true since Cov(X1,X4) = 0 = Cov(Xa, X4), so
we have shown that the best linear predictor of X; based on X5, X3
and X4 is —X2/2.

The expected squared prediction error for predicting X; using —Xo/2
is

B(X1 - (-X2/2))* = 3/2,
which has been computed in the solution to Part (b). Thus a version

of the conditional PDF of X given (X», X3, X4)7 is {f_xz/Q Nk (z2,23,24)T € R3}.

(d) Since the distribution of (X1, X2, X3, X4)T is a multivariate normal
distribution and Cov(X;,X;) = 0 for ¢ € {1,2} and j € {3,4},
(X1, X2)T and (X3, X4)T are independent. Let 3o be the covari-
nace matrix of (X1, X2)7, then 900,075, is a PDF of (X3, X5)T, and
{900,007 5 : (z3,24)" € R*} is a version of the conditional PDF of
(X1, X2)" give (X3, X4)".

(e) Since (X1, X5)T and (X3, X4)7 are independent,

BE(X1X5|X3,Xy) = E(X1X2)
= CO’U(Xl,Xg) + E(Xl)E(XQ)
— 140=-1L
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58. For x € R™ and u € R™, let

Ixu(z,u) = fx(x)fu(u),

then fx v is a PDF of (X,U) since X and U are independent. Consider
the transform T such that

()=o)
r((5))- (oo )= (3)

Ixy(xy) = fxulx,y—g(x))J]|
for x € R, y € R™, where

24 24
_ e T y
7= dt(guyg(w)) gi,wg(m)))
Inxn Onxm _
- det( 25 (Y —9()) ) -

Here for v: a vector value function of a vector w, a%v denotes the matrix
whose (4, j)-th element is the partial derivative of the i-th component of
v with respect to the j-th component of w, I,«, and I,,«., are identity
matrices of sizes n X n and m x m respectively, and Oy, x,, is the n x m
matrix of zeros. From the above calculation, fx y is a joint PDF of
(X,Y) and

Ixy(@y) = fxulxy—g9@)|J| = fx(@) fuly—gx)) (64)

for x € R" and y € R™. It is clear that fx y > 0 since fx > 0 and
fu > 0 by assumption.

Let

then

Let

~

mXxXm

go(x) = - Ixy(z,y)dy

for & € R", then go(x) > 0 since fxy > 0. For x € R" = {x : go(x) >
0}, let

fxy(x,y)
for y € R™, then a version of the conditional PDF of Y given X is
{9y |x=a : © € R"}. Next, we will simplify the expressions of go(x) and
gy |x—=- Note that for z € R",

do(x) = - fxy(z,y)dy

(69 - fx (@) fuly — g(x))dy

[x () fuly —g(z))dy
Rm ——

u

= Jfx(=) fu(u)du

RTYI
=1 since fy is a PDF

= fx(z), (65)
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59.

60.
61.

62.

and for x € R",

9Y|X:m(y)

= fuly—g(z))
= fy|x==(y) (by definition)

for y € R™. Therefore, a version of the conditional PDF of Y given X is
{9v|x=a :®w € R"} = {fy|x=2 : T € R"}.

By assumption, X and ¢ are two random variables such that X ~ N(0, %),
e ~ N(0,02), and X and ¢ are independent, so Q(o71,02): the distribution
of (X +e)is

N(E(X +¢),Var(X +¢)) = N(0,0% + 03).
Note that for oy > 0, o5 > 0 such that o1 # o2, we have

e both (¢1,09) and (03,01) are in (0,00) x (0,00), and
d Q0'170'2 = QU2,01 but (01702) 7& (0'27(71)-

Therefore, the family C = {Qs, .0, : (01,02) € (0,00) x (0,00)} is not
identifiable.

(a)(b)(d) are true. (c) is false.

For € > 0, we have

0 < P(o—0]>¢)
= P(|0 - E6)| > ¢) (since E(f) = 0 by assumption)
< Var2(9) (Chebyshev’s inequality). (66)
€

Since lim,,_yo0 Var(é) = 0 by assumption, we have

im YOO Ly var@) =o,

n—00 g2 €2 noo

which, together with (66), implies that

lim P(|d—0] >¢)=0

n— oo

for ¢ > 0, so the estimator 6 converges to 6 in probability and 6 is a
consistent estimator of 6.

Since

(Xt ey X))t = (YViy oY) TP = [ X = YA+ 4 | X — Yl
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63.

for e > 0,

2
(X, —Y51? < = for cach j € {1,...,k}

= ||(X1,71; e an,n)T - (Yl, [ ,Yk)T”Q S 52
= ||(X1,’ﬂ’ e 7Xk7n)T - (Y17 e >Yk)T|| S g,

SO
0 < P(I(Xipeos Xn) = (e YT > )
52
< P {in-ye> )
b 3
< Br({pomvi> ) “

Jj=1

Suppose that X ,, converges to X; in probability for each j € {1,...,k},
then for e > 0,

€
lim P(<|Xjn,—Y;|>—7]=0 68
noe <{' s i ﬂ}) (68)
for each j € {1,...,k}. From (68) and (67), we have

m P ([[(X1n--o Xen)' — (Y1, Y) T > ) =0

n—oo

for € > 0. That is, we have
P
(Xt Xpn)t = (Y1, V)T

as n — oo. The proof of Fact 4 is complete.

Suppose that X,, and X are random vectors on (Q, F, P), where F is a
o-field on 2 and P is a probability function defined on F. Let

A={weq: nlLIr;oXn(w) = X(w)}
and
B={we: lim g(X, () = g(X (@)}

Then by the assumption that X,, converges to X almost surely as n — oo,
we have

P(A) =1. (69)

We will show that
AC B, (70)

then we have

(70)
0< P(B) < PAs) o

= P(B°) =0= P(B) =1,

which implies g(X,,) converges to g(X) almost surely as n — oo.
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It remains to prove (70). Note that for w € A, we have

lim X, (w) = X(w),

n—oo
which, together with the assumption that ¢ is continuous on R™, implies
that

lim ¢(X,(w)) = g(X(w)),

n—oQ

which implies that w € B. Therefore, A C B and (70) holds.
64. Since X1, ..., X, are IID and

0
1 0
is finite, by SLLN, X converges to #/2 almost surely as n — oo, so X
is a consistent estimator of /2. Let g(z) = 1/(2x) for > 0, then g is
continuous at ¢/2 for § > 0. Apply the continuous mapping theorem for
convergence in probability, ¢g(X) = 1/(2X) is a consistent estimator of

9(6/2) = 1/(2-0/2) = 1/0.

65. (a) Let My be the MGF of Y, where Y ~ I'(av, 1) as given in the problem.
Since X7 ~ BY, we will find E(X;) and E(X?%) by finding E(Y) and
E(Y?) first using My
By the solution to Problem 34(b), My (s) = (1 —s)™® for s < 1.
Since for o > 0,

%My(s) =a(l—s) !
and
d2 —a—2
5 My () = o+ 1)(1 - 5) 2,
we have
EY)=oa(l-s) " _ =« (71)
and
E(Y? = ala+1)(1 - s)_"_2|S:0 =a(a+1). (72)

Since X7 ~ 8Y,

B(X)) = B(8Y) = BE(Y) ‘2 ap
and
E(X}) = B(BY)?) = B°E(Y?) ‘2 Ba(a+ 1),
which gives
Var(X,) = B(X?) - [E(Q)] = Fala +1) - (a8)® = af>.
(b) Let u = E(X;) and pgy = E(X2), then from Part (a), we have
e o (73)

In (73), we can solve for o and § as functions of p and ps, which
gives
2 2
fi2 — [t p p f
f=———anda== = = .
Iz B (pw2—p?)/p po—p?
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Let ) )
s t—s
g(s,t) = — and h(s,t) =

s
for (s,t) € R? such that s > 0 and ¢ > s, then we have
(1) a = g(ﬂvﬂQ)a

(11) 6 = h(:“’?,“?)a and
(iii) g and h are continuous at (u, pe) since by assumption, o > 0

and § > 0, which implies that
p=af>0and uy = af* + (af)? > p.

Let X ="  X;/nand Y = Y | X?/n, then (X,Y)T is a con-
sistent estimator of (p, u2)” by SLLN. By the continuous mapping
theorem for convergence in probability,
C o\ eE P X2 v -x2)'
X,9),h(X, )T = (K _
e g

is a consistent estimator for

2 o\ T
(0 ). )T = (25 20—

Let U; = (I{al}(Xi),I{a2}(Xi)7I{a3}(X¢))T fori=1,...,nand U=
>oi,U;/n, then Uy, ..., U, are IID random vectors and E(U;) =
(p17p27p3)T7 S50

D1 D1 B

Y, =+v/n P2 | — | p2 =vn(U - E(Uy)).

P3 D3
By C.L.T., Y,, converges to N(0,%,) in distribution, where 0 =
(0,0,0)T and

Yo = covariance matrix of U;

Var(I{,;(X1)) Cov(I{a,}(X1)s I{ay} (X1))  Cov(Iga,y(X1), L{azy(X1))
= Cov(I1a,1(X1), I{a,}(X1)) Var(I{a,)(X1)) Cov(1{ay)(X1), I{az)(X1))
Cov(Ia,1(X1), [{a,}(X1))  Cov(I{azy(X1), L{ayy(X1)) Var(I{a,)(X1))

Note that for j, k € {1,2, 3} such that j # k,

Cov(l1a,;3(X1), 10y (X1)) = Ellaj(X1) - Iay(X1)] = E(I{a;3(X1)) E(I{a,} (X1))
= 0—pjpk = —p;pk;
and for j € {1,2,3},

Var(Iyg,3(X1)) = El(I1a,3(X1))*] = [E(Ia,3(X1))]?
= E[(I{a,}(X1))] — 1]
= pi—p.

Thus
p1— P% —P1D2 —P1D3
So=| —pip2 p2—p3 —p2ps (74)
—piPs  —P2p3  P3 — D3

and the limiting distribution of ¥;, is N (0, ).
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(b) Let Y be a random vector such that Y ~ N(0, Xy), where 3 is given

in (74), then by Part (a), Y,, converges to Y in distribution as n — oo.
For y = (y1,v2,y3)" € R3, define g(y) = A~ 'y, then g is continu-
ous on R3. By the continuous mapping theorem for convergence in
distribution, we have

A™Y,, = g(Y;,) converges in distribution to g(Y) = A~'Y

as n — 00, so the limiting distribution of A=Y, is the distribution
of A71Y. Since Y ~ N(0,%), the distribution of A=Y is

N(E(AT'Y),A7'85(A™HT) = N(0,A715A47 1)

since
1/\/;31 0 0
A7l = 0 1/yp, O =(A™HT,
0 0 1/\/;33

Let ¥ = A713yA~!, then the limiting distribution of A=Y, is
N(0,%).

To show that X2 = ¥, let p = (p1,p2,p3)7, then pp” is a 3 x 3 matrix
whose (4, j)-th element is p;p; for ¢, j € {1,2,3} and

(74) Pl—p% —P1p2 —p1p3

o —pip2 P2 —Dp3  —peps
—p1ps  —Dp2p3  P3 — D3
pr 0 O —p?  —pipa —p1p3
= 0 po 0 |+ | —pp2  —p3 —pops
0 0 p3 —pip3s  —p2p3  —D3
= A’—pp”,

which implies that

Y = Aly,A!
AH(A? —pph)AT!
A—lAQA—l _ A—lppTA—l

= I3x3— A7'ppT AT, (75)
where I35 is the 3 x 3 identity matrix. Moreover,
/B, 0 0
p’A™ = (p1 p2 p3) 0 1/\/p, 0 = (yp1 VP2 /D3)
0 0 1/yp,
(76)
Therefore,
75 _ _
52 25 (Iyes — A ppTAY)
= Y-XA lppta!
(75) Y _ <13><3 _A—lppTA—l) A lppT A1
VD1
76 _ _ _ -
T s | ATppTAT AT (Ui v V) | vBe | PTAT
VP3

=1
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