Homework Problems

- Note. Always show your work in your homework solutions to receive full points unless it is stated otherwise.
- 1. (2 pts) Suppose that \mathcal{F} is a σ -field on a sample space Ω and A, B are two events in \mathcal{F} . Show that if $A \subset B$, then $P(A) \leq P(B)$.
- 2. (2 pts) Suppose that $\Omega = \{1, 2, 3, 4, 5\}$ is a sample space. Let $A = \{1, 2, 3\}$, $B = \{1, 2, 4, 5\}$ and $C = \{4, 5\}$. Suppose that \mathcal{F} is a σ -field on Ω such that A, B, C are in \mathcal{F} , and P is a real-valued function defined on \mathcal{F} . In which of the following cases, P cannot be a probability function? Justify your answer. Note that if P cannot be a probability function for two or more cases, you should list all these cases. For cases where you know that P can be a probability function, you do not need to provide justification.
 - (a) P(A) = 0.2, P(B) = 0.3, P(C) = 0.2
 - (b) P(A) = 0.2, P(B) = 0.5, P(C) = 0.2
 - (c) P(A) = 0.8, P(B) = 0.4, P(C) = 0.2
- 3. (4 pts) Suppose that Ω is the set of all positive integers and let C be the collection of all finite subsets of Ω . Here a finite set means a set with finitely many element(s). Let

$$\mathcal{F} = \{ A : A \in \mathcal{C} \text{ or } A^c \in \mathcal{C} \}.$$

Determine whether \mathcal{F} a σ -field on Ω and justify your answer.

- 4. (6 pts) Consider the experiment of rolling a die twice independently. Let X_i be the number obtained from the *i*-th rolling for i = 1, 2. Suppose that $P(X_i = k) = 1/6$ for $k \in \{1, 2, 3, 4, 5, 6\}$ for $i \in \{1, 2\}$. Let A_1 be the event that X_1 is an even number and A_2 be the event that X_2 is an odd number. Let A_3 be the event that $X_1 + X_2$ is an odd number.
 - (a) Show that A_1 and A_3 are independent.
 - (b) Show that A_2 and A_3 are independent.
 - (c) Show that the three events A_1 , A_2 , A_3 are not independent.
- 5. (4 pts) Suppose that A_1, A_2, A_3, A_4 are events in a σ -field on Ω . Suppose that $P(A_i) = 0.1$ and $P(A_i \cap A_j) = 0.05$ for $i, j \in \{1, 2, 3, 4\}$. Find a lower bound and an upper bound for $P(A_1 \cup A_2 \cup A_3 \cup A_4)$. Be sure that the lower bound is greater than 0 and the upper bound is less than 1.
- 6. (6 pts) Suppose that P is a probability function defined on \mathcal{F} : a σ -field on Ω and A is an event in \mathcal{F} such that P(A) > 0. For $B \in \mathcal{F}$, define Q(B) = P(B|A). Show that Q is also a probability function defined on \mathcal{F} .
- 7. (6 pts) Given a sample space Ω , for \mathcal{F} that is a collection of subsets of Ω , \mathcal{F} is called a field on Ω if \mathcal{F} satisfies the following three conditions.
 - (a) $\emptyset \in \mathcal{F}$ and $\Omega \in \mathcal{F}$.
 - (b) $A \in \mathcal{F}$ implies that $A^c \in \mathcal{F}$.
 - (c) For each positive integer $k, A_1, \ldots, A_k \in \mathcal{F}$ implies that $\bigcup_{i=1}^k A_i \in \mathcal{F}$.

Show that if \mathcal{F} is a field on Ω and \mathcal{F} is a finite collection, then \mathcal{F} is a σ -field on Ω .

8. (6 pts) Suppose that \mathcal{F} is a σ -field on Ω and P is a probability function defined on \mathcal{F} . Suppose that A_1, A_2, \ldots , are events in \mathcal{F} such that $A_n \supset A_{n+1}$ for all n. Show that

$$P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n).$$
(1)

Note that we proved (1) in class for the case where $A_n \subset A_{n+1}$ for all n. you may use the result that was proved in class to solve this problem.

9. (6 pts) Suppose that F is the CDF of a random variable X. Show that

$$\lim_{x \to -\infty} F(x) = 0.$$

Note that F is a bounded increasing function, so $\lim_{x\to\infty} F(x)$ exists and you may evaluate the limit using $\lim_{n\to\infty} F(a_n)$ by choosing some sequence $\{a_n\}$ such that $\lim_{n\to\infty} a_n = -\infty$.

10. (12 pts) Consider the following function F:

$$F(x) = \begin{cases} 0.5 + 0.5x & \text{if } 0 < x < 1; \\ c_1 & \text{if } x < 0; \\ c_2 & \text{if } x > 1; \\ c_3 & \text{if } x = 0; \\ c_4 & \text{if } x = 1. \end{cases}$$

where c_1, c_2, c_3, c_4 are constants. Suppose that F is the CDF of a random variable X.

- (a) (8 pts) Find c_1, c_2, c_3, c_4 .
- (b) (4 pts) Explain why X is neither a discrete random variable nor a continuous random variable.
- 11. (8 pts) Suppose that X is a random variable with the CDF given in Problem 10.
 - (a) Find $P(0 < X \le 1)$.
 - (b) Find P(X = 0).
 - (c) Find P(X = 1).
 - (d) Find $P(0 \le X \le 1)$.

If you choose not to turn in Problem 10, you may express your answers in terms of c_1 , c_2 , c_3 , c_4 .

12. (4 pts) Suppose that X is a discrete random variable with PMF p_X , which is given below:

$$p_X(x) = \begin{cases} 0.2 & \text{if } x = -1; \\ 0.4 & \text{if } x = 0; \\ c \cdot (0.5)^x & \text{if } x \in \{1, 2, 3, \ldots\}; \\ 0 & \text{otherwise,} \end{cases}$$

where c > 0 is a constant.

- (a) Find c.
- (b) Find P(X > 25).
- 13. (12 pts) Suppose that X is a discrete random variable with PMF p_X , which is given below:

$$p_X(x) = \begin{cases} 0.2 & \text{if } x = -1; \\ 0.5 & \text{if } x = 0; \\ 0.2 & \text{if } x = 1; \\ 0.1 & \text{if } x = 2; \\ 0 & \text{otherwise,} \end{cases}$$

- (a) Find the CDF of X.
- (b) Let $Y = (X 1)^2$, then Y is also a discrete random variable. Find the PMF of Y.
- (c) Let F be the CDF of X and Z = F(X). Find the PMF of Z.
- 14. (4 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

for $x \in (-\infty, \infty)$. Let Y = 1 + 2X. Find a PDF of Y.

15. (4 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = \begin{cases} 0 & \text{if } x \le 0; \\ 2xe^{-x^2} & \text{if } x > 0, \end{cases}$$

Let F be the CDF of X. Find a PDF of Y = F(X).

16. (4 pts) Suppose that X has PDF f_X , where

$$f_X(x) = \begin{cases} (2+x)/3 & \text{if } -2 < x \le 0; \\ 2(1-x)/3 & \text{if } 0 < x < 1; \\ 0 & \text{if } x \notin (-2,1), \end{cases}$$

Let $Y = X^2$. Find the PDF of Y.

- 17. (4 pts) Consider the X in Problem 15. Find the median and the interquartile range of the distribution of X.
- 18. (4 pts) Suppose that X is a discrete random variable with PMF p_X , where

$$p_X(k) = \begin{cases} C_k^3(0.6)^k (0.4)^{3-k} & \text{if } k \in \{0, 1, 2, 3\};\\ 0 & \text{otherwise.} \end{cases}$$

Find $E(X^2)$.

19. (4 pts) Suppose that $\lambda > 0$ is a constant and X is a discrete random variable with PMF p_X , where

$$p_X(k) = \begin{cases} e^{-\lambda} \lambda^k / k! & \text{if } k \in \{0, 1, 2, \ldots\};\\ 0 & \text{otherwise.} \end{cases}$$

Find E(X(X-1)).

- 20. (4 pts) Suppose that X is a random variable with PDF f_X and $f_X(2-x) = f_X(x)$ for $x \in (-\infty, \infty)$. Show that the median of the distribution of X is 1.
- 21. (4 pts) Suppose that X is a random variable with PDF f_X , where f_X is a continuous function on $(-\infty, \infty)$ and $f_X(x) > 0$ for $x \in (-\infty, \infty)$. Let U be a random variable with PDF f_U , where

$$f_U(u) = \begin{cases} 1 & \text{if } u \in (0,1); \\ 0 & \text{otherwise.} \end{cases}$$

Let F be the CDF of X and $Y = F^{-1}(U)$. Show that f_X is a PDF of Y.

22. (4 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = \begin{cases} 1/(2x^2) & \text{if } |x| > 1; \\ 0 & \text{if } |x| \le 1, \end{cases}$$

Find E(X).

- 23. (4 pts) Consider the X in Problem 22. Find the PDF of Y = 1/X.
- 24. (4 pts) Consider the X in Problem 22. Find E(1/X).
- 25. (4 pts) Suppose that X is a random variable with finite mean μ and standard deviation $\sigma > 0$. Let $Y = (X \mu)/\sigma$. Find E(Y) and Var(Y) when $\mu = 3$ and $\sigma = 2$.
- 26. (4 pts) Suppose that Z is a discrete random variable with n possible values z_1, \ldots, z_n . Suppose that h_1 and h_2 are two real valued functions defined on $\{z_1, \ldots, z_n\}$. Show that

$$E(h_1(Z) + h_2(Z)) = E(h_1(Z)) + E(h_2(Z))$$

without using the property that

$$E(X+Y) = E(X) + E(Y)$$

for random variables X and Y such that E(|X|) and E(|Y|) are finite.

27. (4 pts) Suppose that X is a discrete random variable with n possible values x_1, \ldots, x_n and m and M are two constants such that $m \leq x_i \leq M$ for $i \in \{1, \ldots, n\}$. Show that

$$m \le E(X) \le M. \tag{2}$$

- Remark. In general, for a random variable X such that $P(m \le X \le M) = 1$ for some constants m and M, (2) holds.
- 28. (4 pts) Suppose that X is a random variable with MGF M_X , where

$$M_X(t) = 0.6 + 0.4e^2$$

for $t \in (-\infty, \infty)$. Find $E(X^k)$ for $k \in \{1, 2, 3, 4\}$.

29. (4 pts) Suppose that Y is a discrete random variable with PMF p_Y , where

$$p_Y(y) = \begin{cases} 0.6 & \text{if } y = 0; \\ 0.4 & \text{if } y = 2; \\ 0 & \text{otherwise.} \end{cases}$$

Show that Y and the X in Problem 28 have the same CDF by verifying that the two random variables have the same MGF.

- 30. (10 pts) Consider the random variable X in Problem 19.
 - (a) (4 pts) Find the MGF of X.
 - (b) (4 pts) Find E(X) and $E(X^2)$ using the MGF of X.
 - (c) (2 pts) Find E(X(X-1)) using the result in Part (b).
- 31. (6 pts) Suppose that (X, Y) is a vector of discrete random variables with joint PMF $p_{X,Y}$, where

$$p_{X,Y}(x,y) = \begin{cases} 0.5 & \text{if } (x,y) = (1,2); \\ 0.1 & \text{if } (x,y) = (3,2); \\ 0.3 & \text{if } (x,y) = (3,6); \\ 0.1 & \text{if } (x,y) = (3,7); \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find $P((X, Y) \in (-\infty, 3] \times (-\infty, 2])$.
- (b) Find $P((X + Y) \le 9)$.
- (c) Find the (marginal) PMF of Y.
- 32. (10 pts) Suppose that (X, Y) has joint PDF of $f_{X,Y}$, where

$$f_{X,Y}(x,y) = \begin{cases} cx & \text{if } (x,y) \in (0,1) \times (0,1); \\ 0 & \text{otherwise} \end{cases}$$

and c > 0 is a constant.

- (a) (3 pts) Find c.
- (b) (3 pts) Find $P((X + 2Y) \le 1)$.
- (c) (4 pts) Find a PDF of Y.
- 33. (10 pts) Suppose that (X, Y) has joint CDF $F_{X,Y}$, where

$$F_{X,Y}(x,y) = \begin{cases} 0.5G(x)G(y) + 0.5(1 - e^{-x})(1 - e^{-y}) & \text{if } x \ge 0 \text{ and } y \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

and

$$G(x) = \begin{cases} 0 & \text{if } x < 0; \\ x & \text{if } 0 \le x < 1; \\ 1 & \text{if } x \ge 1. \end{cases}$$

- (a) Find $P(0 < X \le 1 \text{ and } 1 < Y \le 2)$.
- (b) Find the CDF of X.
- 34. (4 pts) Suppose that (X, Y, Z) is a vector of random variables with joint CDF F and a, b, c, d, e, f are constants such that a < b, c < d and e < f. Express

$$P((X, Y, Z) \in (a, b] \times (c, d] \times (e, f])$$

in terms of F and a, b, c, d, e, f.

35. (10 pts) Suppose that (X, Y) has joint PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = \begin{cases} ce^{-(x^2+y^2)/2} & \text{if } (x,y) \in (0,\infty) \times (0,\infty); \\ 0 & \text{otherwise,} \end{cases}$$

and c is a positive constant. Let $U = \sqrt{X^2 + Y^2}$ and $V = \tan^{-1}(Y/X)$. Note that for $z \in (-\infty, \infty)$, $\tan^{-1}(z)$ is defined to be the value θ such that $\tan(\theta) = z$ and $\theta \in (-\pi/2, \pi/2)$.

- (a) (4 points) Find the joint PDF of (U, V). Leave the constant c in your answer.
- (b) (4 points) Find the PDF of V. Leave the constant c in your answer.
- (c) (2 points) Find c using your answer in Part (b) and the fact that the integral of the PDF of V over $(-\infty, \infty)$ is 1.

Remark. Let $I = \int_0^\infty e^{-x^2/2} dx$, then

$$1 = \int_{R^2} f_{X,Y}(x,y) d(x,y) = cI^2,$$

so we have $I = 1/\sqrt{c}$ and $\int_{-\infty}^{\infty} e^{-x^2/2} dx = 2I = 2/\sqrt{c}$.

36. (10 points) Define

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$

for a > 0. Suppose that α and β are two positive constants and (X, Y) is a random vector with joint PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} y^{\beta-1} e^{-x-y} & \text{if } (x,y) \in (0,\infty) \times (0,\infty); \\ 0 & \text{otherwise.} \end{cases}$$

- (a) (4 pts) Find the joint MGF of (X, Y).
- (b) (2 pts) Find the MGF of X.
- (c) (4 pts) Find E(XY) and E(X).
- 37. (10 pts) Consider the (X, Y) in Problem 36. Find a PDF of U = X/(X + Y).

Hint: take V = v(X, Y) for some function v and then find $f_{U,V}$ and f_V .

38. (10 pts) Suppose that (X, Y) is a vector of two discrete random variables with joint PMF $p_{X,Y}$, where

$$p_{X,Y}(x,y) = \begin{cases} 0.2 & \text{if } (x,y) = (-1,2); \\ 0.6 & \text{if } (x,y) = (2,-3); \\ 0.2 & \text{if } (x,y) = (4,-3); \\ 0 & \text{otherwise.} \end{cases}$$

- (a) (5 pts) Find the PMF of 1/(X+Y).
- (b) (5 pts) Find E(1/X + 1/Y).
- 39. (10 pts) Suppose that λ and μ are positive constants and (X, Y) is a vector of two discrete random variables with joint PMF $p_{X,Y}$, where

$$p_{X,Y}(x,y) = \begin{cases} e^{-\lambda - \mu} \lambda^x \mu^y / (x!y!) & \text{if } x, y \in \{0, 1, 2, \ldots\};\\ 0 & \text{otherwise.} \end{cases}$$

- (a) (5 pts) Find the PMF of X + Y + 1.
- (b) (5 pts) Find E(X + Y + 1).
- 40. (12 pts) Suppose that (X, Y) has a joint PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = \begin{cases} c & \text{if } (x,y) \in \{(x,y) : -2 < x + 2y < 2 \text{ and } -2 < x - 2y < 2\};\\ 0 & \text{otherwise}, \end{cases}$$

and c is the constant such that $\int_{R^2} f_{X,Y}(x,y) d(x,y) = 1$.

- (a) (4 pts) Find E(X|Y). You may leave c in your answer.
- (b) (4 pts) Find Var(X|Y). You may leave c in your answer.
- (c) (4 pts) Determine whether X + 2Y and X 2Y are independent. Justify your answer.
- 41. (14 pts) Suppose that (X, Y) is a vector of two discrete random variables with joint PMF $p_{X,Y}$, where

$$p_{X,Y}(x,y) = \begin{cases} 0.5 & \text{if } (x,y) = (1,2); \\ 0.4 & \text{if } (x,y) = (0,-3); \\ 0.1 & \text{if } (x,y) = (1,-3); \\ 0 & \text{otherwise.} \end{cases}$$

- (a) (4 pts) Find E(X|Y = -3) and Var(X|Y = -3).
- (b) (4 pts) Find E(X|Y) and Var(X|Y).
- (c) (4 pts) Find E(Var(X|Y)), Var(E(X|Y)) and Var(X). Check whether

$$Var(X) = E(Var(X|Y)) + Var(E(X|Y))$$

based on your answers.

- (d) (2 pts) Determine whether X and Y are independent. Justify your answer.
- 42. (12 pts) For a > 0, define

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$

and

$$f_a(x) = \begin{cases} \frac{1}{\Gamma(a)} x^{a-1} e^{-x} & \text{if } x > 0; \\ 0 & \text{otherwise.} \end{cases}$$

Suppose that X and Y are two random variables with PDFs f_{α} and f_{β} respectively, where α and β are positive constants. Suppose that X and Y are independent. To solve this problem, you may use the joint MGF of (X, Y) and the MGF of X given in the solution to Problem 36.

- (a) (4 pts) Find the MGF of X + Y.
- (b) (2 pts) Find a PDF of X + Y.
- (c) (4 pts) Find the joint MGF of (X + Y, X Y).
- (d) (2 pts) Determine whether X+Y and X-Y are independent. Justify your anser.

- 43. (4 pts) Suppose that (X, Y) has joint MGF $M_{X,Y}$ and $M_{X,Y}(t_1, t_2) = g(t_1)h(t_2)$ is finite for $|t_1| < \delta$, $|t_2| < \delta$, where δ is a positive constant. Suppose that $M_{X,Y}(t_1, t_2) = g(t_1)h(t_2)$ for $|t_1| < \delta$, $|t_2| < \delta$, where g and h are two functions. Can we deduce that X and Y are independent? Justify your answer.
- 44. (6 pts) Suppose that $X \sim N(\mu, \sigma^2)$, where $\mu \in (-\infty, \infty)$ and $\sigma > 0$. Let Y = a + bX, where a and b are constants and $b \neq 0$. Show that $Y \sim N(E(Y), Var(Y))$. You may use the MGF of a normal distribution or the PDF of a normal distribution given in Example 4 in the handout "Independent random variables".
- 45. (4 pts) Suppose that Z_1 , Z_2 , Z_3 are IID random variables and $Z_1 \sim N(0,1)$. Let

$$\left(\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} Z_1 \\ Z_2 \\ Z_3 \end{array}\right).$$

Find a PDF of (Y_1, Y_2, Y_3) .

46. (4 pts) Suppose that Z_1, \ldots, Z_n are IID random variables and $Z_1 \sim N(0,1)$. Suppose that A is an $n \times n$ matrix of constants whose inverse matrix exists and μ_1, \ldots, μ_n are constants. Let

$$\left(\begin{array}{c} Y_1\\ \vdots\\ Y_n\end{array}\right) = A \left(\begin{array}{c} Z_1\\ \vdots\\ Z_n\end{array}\right) + \left(\begin{array}{c} \mu_1\\ \vdots\\ \mu_n\end{array}\right)$$

Find a PDF of (Y_1, \ldots, Y_n) that is determined by AA^T and μ_1, \ldots, μ_n . You may use results from linear algebra such as $\det(B^T) = \det(B)$ and

$$\det(BC) = \det(B) \cdot \det(C)$$

for square matrices B and C. Here det(A) denotes the determinant of a square matrix A.

- 47. (4 pts) Suppose that X_1, \ldots, X_n are IID and $X_1 \sim N(\mu, \sigma^2)$. Let $\overline{X} = (\sum_{i=1}^n X_i)/n$ and $Y = (X_1 \overline{X}, \ldots, X_n \overline{X})$. Show that $\overline{X} \mu$ and Y are independent.
- 48. (6 pts) Suppose that $Z \sim N(0, 1)$ and let $Y = Z^2/2$. Find the MGF of Y and find the constant a such that the function f_a in Problem 42 is a PDF of Y. You may use the results in the solutions to Problems 36 and 42.
- 49. (6 pts) Suppose that (X, Y) is a vector of two discrete random variables with joint PMF $p_{X,Y}$, where

$$p_{X,Y}(x,y) = \begin{cases} 0.5 & \text{if } (x,y) = (1,2); \\ 0.4 & \text{if } (x,y) = (0,a); \\ 0.1 & \text{if } (x,y) = (-1,-2); \\ 0 & \text{otherwise}, \end{cases}$$

and a is a constant.

(a) (4 pts) Express Corr(X, Y) as function of a.

(b) (2 pts) Find all a's such that |Corr(X, Y)| = 1.

- 50. (4 pts) Suppose that X is a random variable and Var(X) > 0. For constants a and b such that b > 0, let Y = a + bX. Show that Var(Y) > 0 and Corr(X, Y) = 1.
- 51. (16 pts) Suppose that (X, Y, Z) has a joint PDF $f_{X,Y,Z}$, where for $(x, y, z) \in \mathbb{R}^3$,

$$f_{X,Y,Z}(x,y,z) = \begin{cases} e^{-(x^2+4xy+5y^2+5)}ze^{-z}/\pi & \text{if } z > 0; \\ 0 & \text{if } z \le 0. \end{cases}$$

- (a) (2 pts) Find a joint PDF of (X, Y).
- (b) (2 pts) Find a version of the conditional PDF of Z given (X, Y) = (x, y) for all $(x, y) \in \mathbb{R}^2$.
- (c) (2 pts) Find E(Z|X, Y).
- (d) (4 pts) Find a version of the conditional PDF of X given Y = y for all $y \in (-\infty, \infty)$.
- (e) (4 pts) Find Cov(X, Y).
- (f) (2 pts) Determine whether X and Y independent and justify your answer.
- 52. (4 pts) Suppose that (X, Y) has a joint PDF and $f_{X|Y=y}$ is a version of the conditional PDF of X given Y = y for $y \in (-\infty, \infty)$. Then for g such that E(g(X, Y)) is finite, E(g(X, Y)|Y) can be obtained using

$$E(g(X,Y)|Y=y) = \int g(x,y) f_{X|Y=y}(x) dx.$$
 (3)

for all y. Use (3) to show that E(XY|Y) = YE(X|Y) when E(XY) is finite.

53. (4 pts) For $y \in (-\infty, \infty)$, define a function g_y as follows:

$$g_y(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-y)^2/2}$$

for $x \in (-\infty, \infty)$. Suppose that X and Y are random variables such that $Y \sim N(0, 1)$ and a version of the conditional PDF of X given Y = y is g_y for all $y \in (-\infty, \infty)$. Find a version of the conditional PDF of Y given X = x for all $x \in (-\infty, \infty)$.

- 54. (4 pts) Suppose that Var(X) = 1, Var(Y) = 0.25, and Cov(X, Y) = 0.5.
 - (a) (2 pts) Find Corr(X, Y).
 - (b) (2 pts) Find Var(X 2Y).
- 55. (6 pts) Suppose that $\mathbf{X} = (X_1, \dots, X_m)^T$ and $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ are two random vectors. Define the covariance matrix for the pair (\mathbf{X}, \mathbf{Y}) as

$$Cov(\boldsymbol{X}, \boldsymbol{Y}) = E((\boldsymbol{X} - \boldsymbol{\mu}_1)(\boldsymbol{Y} - \boldsymbol{\mu}_2)^T)$$

where $\boldsymbol{\mu}_1 = E(\boldsymbol{X})$ and $\boldsymbol{\mu}_2 = E(\boldsymbol{Y})$.

(a) (3 pts) Suppose that a and b are constant column vectors of length m and n respectively. Show that

$$Cov(\mathbf{X} + \mathbf{a}, \mathbf{Y} + \mathbf{b}) = Cov(\mathbf{X}, \mathbf{Y}).$$

(b) (3 pts) Suppose that A and B are constant matrice with numbers of columns m and n respectively. Show that

$$Cov(AX, BY) = ACov(X, Y)B^T.$$

Note.

- The (i, j)-th element of $Cov(\mathbf{X}, \mathbf{Y})$ is $Cov(X_i, Y_j)$.
- Cov(X, X) is the covariance matrix of X defined in the handout "Multivariate normal distributions".
- From the results of this problem, we have that the covariance matrix of AX + b is

$$Cov(A\boldsymbol{X} + \boldsymbol{b}, A\boldsymbol{X} + \boldsymbol{b}) = Cov(A\boldsymbol{X}, A\boldsymbol{X}) = ACov(\boldsymbol{X}, \boldsymbol{X})A^{T}.$$
 (4)

This result in (4) is also given in the handout "Multivariate normal distributions" (before Example 3).

56. (6 pts) Suppose that $\boldsymbol{X} = (X_1, X_2, X_3, X_4)^T$ is a random vector with $E(\boldsymbol{X}) = (0, 0, 0, 0)^T$ and covariance matrix Σ , where

$$\Sigma = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

- (a) (3 pts) Find $Var(X_1 + X_2 + X_3)$ by finding a matrix A such that $AX = (X_1 + X_2 + X_3)$ and then applying (4).
- (b) (3 pts) Find the best linear predictor of X_1 based on X_2 .
- 57. (6 pts) Consider the (X_1, X_2, X_3, X_4) in Problem 56. Define the best linear predictor X_1 based on X_2 and X_3 to be the linear combination $a_0 + b_0 X_2 + c_0 X_3$ such that

$$E(X_1 - (a + bX_2 + cX_3))^2$$

is minimized at $(a, b, c) = (a_0, b_0, c_0)$. Find the best linear predictor X_1 based on X_2 and X_3 .

- 58. (9 pts) Consider the (X_1, X_2, X_3, X_4) in Problem 56. Suppose that the distribution of (X_1, X_2, X_3, X_4) is a multivariate normal distribution.
 - (a) (6 pts) Show that (X_1, X_2) and (X_3, X_4) are independent by verifying that

$$M_{X_1,X_2,X_3,X_4}(t_1,t_2,t_3,t_4) = M_{X_1,X_2}(t_1,t_2)M_{X_3,X_4}(t_3,t_4)$$

for $(t_1, t_2, t_3, t_4) \in \mathbb{R}^4$. Here M_{X_1, X_2, X_3, X_4} , M_{X_1, X_2} and M_{X_3, X_4} are the moment generating functions of (X_1, X_2, X_3, X_4) , (X_1, X_2) and (X_3, X_4) respectively.

- (b) (3 pts) Let $\bar{X} = \sum_{i=1}^{4} X_i/4$. Find the distribution of \bar{X} .
- 59. (6 pts) Suppose that $\mathbf{X} = (X_1, \ldots, X_m)^T$ and $\mathbf{Y} = (Y_1, \ldots, Y_n)^T$ are two random vectors and the distribution of $(\mathbf{X}^T, \mathbf{Y}^T)$ is a multivariate normal distribution. Suppose that $Cov(X_i, Y_j) = 0$ for every (i, j) such that $1 \le i \le m$ and $1 \le j \le n$. That is, $Cov(\mathbf{X}, \mathbf{Y})$ is a matrix of 0's. Show that \mathbf{X} and \mathbf{Y} are independent.

- 60. (8 pts) Suppose that X and ε are random variables such that Var(X) > 0, $Var(\varepsilon) > 0$, $Cov(X, \varepsilon) = 0$ and $E(\varepsilon) = 0$. Let $Y = 1 + 2X + \varepsilon$.
 - (a) (4 pts) Show that the best linear predictor of Y based on X is 1+2X.
 - (b) (4 pts) For $\mu \in (-\infty, \infty)$ and $\sigma > 0$, define the function $f_{\mu,\sigma}$ as follows:

$$f_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} \text{ for } x \in (-\infty,\infty).$$
 (5)

Suppose that the distribution (X, ε) is a multivariate normal distribution and $Var(\varepsilon) > 0$. Show that a version of the conditional PDF of Y given X = x is $f_{\mu,\sigma}$ with $\mu = 1 + 2x$ and $\sigma^2 = E(Y - (1 + 2X))^2$ for $x \in (-\infty, \infty)$.

61. (4 pts) Suppose that $(X_{i,1}, X_{i,2}, Y_i)$: i = 1, ..., n are n vectors of observations for variables X_1, X_2 and Y. A way to investigate the relation between Y and (X_1, X_2) is to find constants a, b_1, b_2 such that $Y_i \approx a + b_1 X_{i,1} + b_2 X_{i,2}$ using least square estimation. That is, find a, b_1 , and b_2 so that

$$RSS(a, b_1, b_2) = \sum_{i=1}^{n} (Y_i - (a + b_1 X_{i,1} + b_2 X_{i,2}))^2$$

is minimized. Suppose that $RSS(a, b_1, b_2)$ is minimized at $(a, b_1, b_2) = (\hat{a}, \hat{b}_1, \hat{b}_2)$. Let $\bar{X}_j = \sum_{i=1}^n X_{i,j}/n$ for $j = 1, 2, \bar{Y} = \sum_{i=1}^n Y_i/n$ and

$$S_{X_1,X_2} = \begin{pmatrix} \sum_{i=1}^n (X_{i,1} - \bar{X}_1)^2 & \sum_{i=1}^n (X_{i,1} - \bar{X}_1)(X_{i,2} - \bar{X}_2) \\ \sum_{i=1}^n (X_{i,1} - \bar{X}_1)(X_{i,2} - \bar{X}_2) & \sum_{i=1}^n (X_{i,2} - \bar{X}_2)^2 \end{pmatrix}$$

Show that

$$S_{X_1,X_2}\left(\begin{array}{c}\hat{b}_1\\\hat{b}_2\end{array}\right) = \left(\begin{array}{c}\sum_{i=1}^n (X_{i,1} - \bar{X}_1)(Y_i - \bar{Y})\\\sum_{i=1}^n (X_{i,2} - \bar{X}_2)(Y_i - \bar{Y})\end{array}\right),$$

and

$$\bar{Y} = \hat{a} + \hat{b}_1 \bar{X}_1 + \hat{b}_2 \bar{X}_2.$$

Hint: you may consider a random vector (W, V_1, V_2) so that $P((W, V_1, V_2) = (Y_i, X_{i,1}, X_{i,2})) = 1/n$ for i = 1, ..., n (treating $(Y_i, X_{i,1}, X_{i,2})$ as non-random), then $E(W - (a + b_1V_1 + b_2V_2))^2 = RSS(a, b_1, b_2)/n$ and then apply the results in Equations (3) and (4) in the handout "Multivariate normal distribution".

62. (10 pts) Suppose that $\boldsymbol{X} = (X_1, X_2, X_3, X_4)^T$ is a random vector with $E(\boldsymbol{X}) = (1, 2, 3, 4)^T$ and covariance matrix Σ , where

$$\Sigma = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}.$$

- (a) (4 pts) Find the best linear predictor of X_4 based on X_1 and X_3 .
- (b) (6 pts) Suppose that $\mathbf{X} \sim N(E(\mathbf{X}), \Sigma)$. Find a constant b such that $X_3 bX_2$ and X_2 are independent. In addition, find $E(X_3|X_2)$ and $Var(X_3|X_2)$.

63. (8 pts) Suppose that $\boldsymbol{X} = (X_1, X_2, X_3, X_4, X_5)^T$ is a random vector with $E(\boldsymbol{X}) = (1, 2, 3, 4, 5)^T$ and covariance matrix Σ , where

$$\Sigma = \begin{pmatrix} 2 & 1 & 0.5 & 0 & 0 \\ 1 & 2 & 1 & 0.5 & 0 \\ 0.5 & 1 & 2 & 0 & 0 \\ 0 & 0.5 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Suppose that $\boldsymbol{X} \sim N(E(\boldsymbol{X}), \Sigma)$.

- (a) (6 pts) Find a version of the conditional PDF of (X_1, X_2) given $(X_3, X_4, X_5) = (x_3, x_4, x_5)$ for $(x_3, x_4, x_5) \in \mathbb{R}^3$.
- (b) (2 pts) Find a version of the conditional PDF of X_5 given $(X_1, X_2, X_3, X_4) = (x_1, x_2, x_3, x_4)$ for $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$.
- 64. (6 pts) Consider the random vector $\boldsymbol{X} = (X_1, X_2, X_3, X_4, X_5)^T$ in Problem 63. Let $\boldsymbol{X}_0 = (X_2, X_3, X_4)^T$ Find a 3×3 invertible matrix A such that all the components in $A\boldsymbol{X}_0$ are independent.
- 65. (4 pts) Suppose that X is a nonnegative random variable and E(X) is finite. Show that for a positive constant c,

$$P(X \ge c) \le \frac{E(X)}{c}.$$
(6)

You may use the following result in your proof.

Fact 1 Suppose that X_1 and X_2 are two random variables such that $X_1 \leq X_2$ and $E(X_1)$ and $E(X_2)$ are finite. Then $E(X_1) \leq E(X_2)$.

Remark. (6) is known as the Markov inequality.

- 66. (4 pts) Suppose that n_1 , n_2 are positive integers and p is a constant in (0,1). Suppose that X and Y are two independent random variables such that $X \sim b(n_1, p)$ and $Y \sim b(n_2, p)$. Show that $X + Y \sim b(n_1 + n_2, p)$. Hint: compute the MGF of X + Y and compare it with the MGF of $b(n_1 + n_2, p)$.
- 67. (4 pts) Suppose that $\alpha > 0$ and $\beta > 0$. Define

$$f_{\alpha,\beta}(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} & \text{if } x > 0; \\ 0 & \text{if } x \le 0, \end{cases}$$

where

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

Then the distribution with PDF $f_{\alpha,\beta}$ is the gamma distribution $\Gamma(\alpha,\beta)$. Let $M_{\alpha,\beta}$ be the MGF of $\Gamma(\alpha,\beta)$, then we have shown in class that

$$M_{\alpha,\beta}(t) = (1 - \beta t)^{-\alpha}$$

for $t < 1/\beta$. Suppose that λ is a positive constant, T_1, \ldots, T_k are IID random variables, and $T_1 \sim \Gamma(1, 1/\lambda)$. Show that $\sum_{i=1}^k T_i \sim \Gamma(k, 1/\lambda)$. Do not use Fact 3 in the handout "Some special distributions" to solve this problem.

68. (16 pts) For $(y_1, y_2, y_3) \in \mathbb{R}^3$, define

$$g_{y_2,y_3}(y_1) = \frac{1}{\sqrt{2\pi}} e^{-(y_1 - y_2 - y_3)^2/2}$$

and

$$h(y_2, y_3) = \left(\frac{\sqrt{3}}{2\pi}\right) e^{-(2y_2^2 + 2y_3^2 + 2y_2y_3)/2}.$$

Suppose that (Y_1, Y_2, Y_3) is a random vector, h is a PDF of (Y_2, Y_3) and g_{y_2,y_3} is a version of the conditional PDF of Y_1 given $(Y_2, Y_3) = (y_2, y_3)$ for $(y_2, y_3) \in \mathbb{R}^2$. We have verified the following results in class:

(i) h is a PDF of $N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ with $\boldsymbol{\mu}_1 = (0, 0)^T$ and

$$\Sigma_1 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix},$$

- (ii) $E(Y_1|Y_2, Y_3) = Y_2 + Y_3.$
- (iii) $Cov(Y_1, Y_2) = 1/3.$
- (a) (4 pts) Find $Cov(Y_1, Y_3)$.
- (b) (4 pts) Show that $E(Y_1^2|Y_2, Y_3) = 1 + (Y_2 + Y_3)^2$.
- (c) (4 pts) Let Σ be the covariance matrix of $(Y_1, Y_2, Y_3)^T$. Find Σ .
- (d) (4 pts) Let $\boldsymbol{\mu} = (0, 0, 0)^T$. Show that $(Y_1, Y_2, Y_3)^T \sim N(\boldsymbol{\mu}, \Sigma)$, where Σ is the covariance matrix of $(Y_1, Y_2, Y_3)^T$ found in Part (c).