Homework Problems

- Note. Always show your work in your homework solutions to receive full points unless it is stated otherwise.
- 1. (5 pts) Suppose that P is a probability function defined on a σ -field \mathcal{F} . For an event $B \in \mathcal{F}$ such that P(B) > 0, define a function Q on \mathcal{F} by

$$Q(A) = \frac{P(A \cap B)}{P(B)}$$

for $A \in \mathcal{F}$. Verify that Q is a probabilty function on \mathcal{F} .

2. (5 pts) Suppose that P is a probability function defined on a σ -field \mathcal{F} , and $\{A_n\}_{n=1}^{\infty}$ is a sequence of events in \mathcal{F} such that $A_n \supset A_{n+1}$ for all n. Show that

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n).$$

3. (5 pts) Suppose that \mathcal{F} is a σ -field on $\Omega = (-\infty, \infty)$ such that all open intervals in $(-\infty, \infty)$ are in \mathcal{F} . Suppose that P is a probability function on \mathcal{F} such that for $n \in \{1, 2, \ldots, \}$,

$$P\left(\left(-\frac{1}{n}, \frac{1}{n}\right)\right) = 0.4 + \frac{0.6}{n}.$$

Find $P(\{0\})$.

4. (5 pts) Suppose that \mathcal{F} is a σ -field on $\Omega = \{1, 2, 3, 4, 5\}$. Let $A = \{1, 2, 4, 5\}$, $B = \{1, 2, 4\}$ and $C = \{1, 4, 5\}$. Suppose that A, B, C are in \mathcal{F} and P is a probability function defined on \mathcal{F} . Express $P(\{5\})$, $P(\{1, 4\})$, $P(\{2\})$ and $P(\{3\})$ in terms of P(A), P(B) and P(C). Explain why we cannot have

$$(P(A), P(B), P(C)) = (0.5, 0.3, 0.1).$$

- 5. (4 pts) Suppose that A_1 , A_2 , A_3 , A_4 are events in a σ -field on Ω . Suppose that $P(A_i) = 0.1$ and $P(A_i \cap A_j) = 0.05$ for $i, j \in \{1, 2, 3, 4\}$. Find a lower bound and an upper bound for $P(A_1 \cup A_2 \cup A_3 \cup A_4)$. Be sure that the lower bound is greater than 0 and the upper bound is less than 1.
- 6. (4 pts) Suppose that \mathcal{F} is a σ -field on a space Ω . Suppose that $\{A_n\}_{n=1}^{\infty}$ is a sequence of sets in \mathcal{F} . Show that $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.
- 7. (8 pts) Suppose that $\Omega = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$. Let $\mathcal{C} = \{\emptyset, \Omega, A, B\}$. Suppose that \mathcal{F} is the smallest σ -field on Ω and $\mathcal{C} \subset \mathcal{F}$. List all sets that should be included in \mathcal{F} and explain why they should be in \mathcal{F} . You do not have to verify that the collection of sets in your list is a σ -field, but be sure it is.
- 8. (4 pts) Consider the space Ω and the σ -field \mathcal{F} in Problem (7). For $w \in \Omega$, define

$$X(w) = \begin{cases} 10 & \text{if } w = 1; \\ 20 & \text{if } w \neq 1. \end{cases}$$

Explain why X is not a measurable function from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$.

1

9. (4 pts) Suppose that X is a random variable with CDF F, where

$$F(x) = \begin{cases} 0 & \text{if } x < 0; \\ 0.5 + 0.5x & \text{if } 0 \le x < 1; \\ 1 & \text{if } x \ge 1; \end{cases}$$

Find P(X = a) for every $a \in R$.

- 10. (4 pts) Consider the experiment of tossing a coin twice independently. Let X be the total number of heads obtained in this experiment. Specify a probability space (Ω, \mathcal{F}, P) so that X is a random variable on the probability space. You may write down your answer directly without justification.
- 11. (6 pts) Suppose that F is the CDF of a random variable X. Show that $\lim_{x\to-\infty} F(x)=0$. You may use the fact that $\lim_{x\to-\infty} F(x)$ exists without proving it.
- 12. (16 pts) Consider the following function F:

$$F(x) = \begin{cases} c_1 & \text{if } x < 0; \\ 0.5 + 0.5x & \text{if } 0 < x < 1; \\ c_2 & \text{if } x > 1; \\ c_3 & \text{if } x = 0; \\ c_4 & \text{if } x = 1, \end{cases}$$

where c_1 , c_2 , c_3 , c_4 are constants. Suppose that F is the CDF of some random variable X.

- (a) (8 pts) Find c_1, c_2, c_3, c_4 .
- (b) (4 pts) Explain why X is not a discrete random variable.
- (c) (4 pts) Find $P(0 \le X \le 1)$.
- 13. (4 pts) Suppose that X is a discrete random variable with PMF p_X , which is given below:

$$p_X(x) = \begin{cases} 0.2 & \text{if } x = -1; \\ 0.4 & \text{if } x = 0; \\ c \cdot (0.5)^x & \text{if } x \in \{1, 2, 3 \dots, \}; \\ 0 & \text{otherwise,} \end{cases}$$

where c > 0 is a constant.

- (a) Find c.
- (b) Find P(X > 25).
- 14. (6 pts) Suppose that X is a random variable with CDF F, where

$$F(x) = \begin{cases} 0 & \text{if } x < 0; \\ 1 - (0.5)^{(k+1)} & \text{if } k \le x < (k+1) \text{ for } k \in \{0, 1, 2\}; \\ 1 & \text{if } x \ge 3. \end{cases}$$

Let $A = (-0.5, 1.5) \cup (2.2, 3.5) \cup (4, 5)$. Find $P(X \in A)$.

15. (6 pts) Suppose that X is a random variable with CDF F, where

$$F(x) = \begin{cases} 0 & \text{if } x < 0; \\ 1 - e^{-2x} & \text{if } x \ge 0. \end{cases}$$

Find a PDF of X and find P(X > 2).

16. (6 pts) Suppose that X is a random variable with PDF f_X . Let $S_X = \{x : f_X(x) > 0\}$. Suppose that S_X is an open interval and f_X is continuous on S_X . Let F be the CDF of X. Suppose that F' > 0 and is continuous on S_X . Then it can be shown that inverse function F^{-1} is defined on (0,1) (but you don't have to prove this result). Suppose that U is a random variable with PDF f_U , where

$$f_U(x) = \begin{cases} 1 & \text{if } x \in (0,1); \\ 0 & \text{otherwise.} \end{cases}$$

Show that f_X is a PDF of $F^{-1}(U)$.

Note:

- The disitribution of U is called the uniform distribution on (0,1), denoted by U(0,1).
- The result that X and $F^{-1}(U)$ have the same distribution can be established under weaker conditions.
- From now on, we will use the notation I_A to denote the indicator function of A for a given set A, which is defined by

$$I_A(x) = \begin{cases} 1 & \text{if } x \in A; \\ 0 & \text{otherwise.} \end{cases}$$

For instance, the function f_U is the indicator function $I_{(0,1)}$.

17. (6 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = 2xe^{-x^2}I_{(0,\infty)}(x)$$
 for $x \in R$.

Find a PDF of $Y = \sqrt{X}$.

18. (6 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = |x|I_{(-1,0)}(x) + 0.5e^{-x}I_{(0,\infty)}(x)$$

Find a PDF of $Y = X^2$.

19. (6 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = e^{-x} I_{(0,\infty)}(x)$$
 for $x \in R$.

Suppose that

$$Y = \begin{cases} X & \text{if } X \le 0.5; \\ 0.5 & \text{if } X > 0.5. \end{cases}$$

Find the CDF of Y and explain why Y does not have a PDF.

20. (8 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = 2xe^{-x^2}I_{(0,\infty)}(x)$$
 for $x \in R$.

- (a) (4 pts) Find the CDF of X.
- (b) (4 pts) Find the median and the IQR of the distribution of X.

- 21. (4 pts) Suppose that X is a random variable such that both $E(X^2)$ and E(|X|) are finite. Verify that $Var(X) = E(X^2) (E(X))^2$ using Properties (i)–(iii) listed in Page 6 of the handout "Quantile and expectation".
- 22. (4 pts) Suppose that X is a random variable with finite expectation μ and standard deviation $\sigma > 0$ ($\sigma = \sqrt{Var(X)}$). Let $Y = (X \mu)/\sigma$. Find E(Y) and Var(Y) with $\mu = 1.5$ and $\sigma = 1.2$.
- 23. (4 pts) Suppose that X is a discrete random variable with PMF p_X , where for $x \in R$,

$$p_X(x) = \begin{cases} C_x^3(0.6)^x(0.4)^{3-x} & \text{if } x \in \{0,1,2,3\}; \\ 0 & \text{otherwise.} \end{cases}$$

Find $E(X^2)$.

24. (8 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = \frac{1}{2x^2} \cdot I_{(-\infty,-1)\cup(1,\infty)}(x)$$

for $x \in R$.

- (a) (4 ps) Find a PDF of 1/X.
- (b) (4 ps) Find E(1/X).
- 25. (8 pts) Suppose that X and Y are discrete random variables, and

$$P((X,Y) = (x,y)) = \begin{cases} 0.5 & \text{if } (x,y) = (1,2); \\ 0.1 & \text{if } (x,y) = (3,2); \\ 0.3 & \text{if } (x,y) = (3,6); \\ 0.1 & \text{if } (x,y) = (3,7); \\ 0 & \text{otherwise.} \end{cases}$$

It can be shown that for discrete random variables X and Y,

$$E(g(X,Y)) = \sum_{(x,y):P((X,Y)=(x,y))>0} g(x,y)P((X,Y)=(x,y))$$
 (1)

if g is nonnegative.

- (a) (4 pts) Find E(XY) using (1).
- (b) (4 pts) Find E(XY) using the PMF of XY.
- 26. (4 pts) Suppose that X has PDF f_X , and g is a function defined by

$$g(x) = \sum_{i=1}^{m} a_i I_{A_i}(x),$$

where a_1, \ldots, a_m are constants and A_1, \ldots, A_m are disjoint intervals. Therefore, g(X) has only m possible values a_1, \ldots, a_m . Show that

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

27. (4 pts) Suppose that X is a random variable with MGF M_X , where

$$M_X(t) = 0.6 + 0.4e^{2t}$$

for $t \in (-\infty, \infty)$. Find $E(X^k)$ for $k \in \{1, 2, 3, 4\}$.

28. (4 pts) Suppose that Y is a discrete random variable with PMF p_Y , where

$$p_Y(y) = \begin{cases} 0.6 & \text{if } y = 0; \\ 0.4 & \text{if } y = 2; \\ 0 & \text{otherwise.} \end{cases}$$

Show that the CDF of Y is the same as the CDF of the X in Problem 27 by verifying that X and Y have the same MGF.

29. (8 pts) Suppose that X is a discrete random variable with PMF p_X , where

$$p_X(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!} I_{\{0,1,2,\dots\}}(x)$$
 (2)

for $x \in R$, where $\lambda > 0$ is a constant.

- (a) (4 pts) Find the MGF of X.
- (b) (4 pts) Show that $E(X) = \lambda$ and find Var(X).

Note. The distribution of X with the PMF p_X given in (2) is called the Poisson distribution with mean λ .

30. (8 pts) Suppose that X is a random variable with PDF f_X , where

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

for $x \in R$, and $\mu \in R$ and $\sigma > 0$ are constants. Let $Y = (X - \mu)/\sigma$.

- (a) (4 pts) Find the MGF of Y.
- (b) (4 pts) Find $E(Y^6)$.

Note. Recall that we found the MGF of X in class when $\mu=0$ and $\sigma=1$. You may use the MGF found in class for this problem.

31. (4 pts) Suppose that (X,Y) is a random vector with CDF $F_{X,Y}$, where for $(x,y) \in \mathbb{R}^2$,

$$F_{X,Y}(x,y) = \begin{cases} (0.5G(x)G(y) + 0.5(1 - e^{-x})(1 - e^{-y})) & \text{if } x \ge 0 \text{ and } y \ge 0; \\ 0 & \text{otherwise,} \end{cases}$$

and the function G is defined by

$$G(x) = xI_{(0,1)}(x) + I_{[1,\infty)}(x)$$

for $x \in R$. Find $P(0 < X \le 1 \text{ and } 1 < Y \le 2)$.

32. (4 pts) Suppose that (X, Y, Z) is a random vector with joint CDF F. Show that

$$P((X,Y,Z) \in (a,b] \times (c,d] \times (e,f])$$
= $F(b,d,f) - F(b,c,f) - F(a,d,f) + F(a,c,f)$
- $F(b,d,e) + F(b,c,e) + F(a,d,e) - F(a,c,e)$,

where a, b, c, d, e, f are constants such that a < b, c < d and e < f.

- 33. (2 pts) Consider the (X,Y) in Problem 31. Find the CDF of X.
- 34. Suppose that (X,Y) has PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = cxI_{(0,1)}(x)I_{(0,1)}(y)$$

for $(x, y) \in \mathbb{R}^2$ and c > 0 is a constant.

- (a) (2 pts) Show that c = 2.
- (b) (4 pts) Find $P(X + 2Y \le 1)$.
- (c) (4 pts) Find a PDF of Y.

Remark. The distribution of Y is called the uniform distirbution on (0,1), denoted by U(0,1). For a < b, the distribution of a + (b-a)Y is called the uniform distirbution on (a,b), denoted by U(a,b).

35. (10 pts) Suppose that (X,Y) has PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = ce^{-(x^2+y^2)/2}I_{(0,\infty)}(x)I_{(0,\infty)}(y)$$

for $(x,y) \in R^2$ and c > 0 is a constant. Let $U = \sqrt{X^2 + Y^2}$ and $V = \tan^{-1}(Y/X)$. Note that for $z \in -\infty, \infty$, $\tan^{-1}(z)$ is the value $\theta \in (-\pi/2, \pi/2)$ such that $\tan(\theta) = z$.

- (a) (4 pts) Find a PDF of (U, V). Leave the constant c in your answer.
- (b) (4 pts) Find a PDF of V. Leave the constant c in your answer.
- (c) (2 pts) Find c using your answer in Part (b) and the fact that the integral of a PDF of V over $(-\infty, \infty)$ is 1.

Remark. The result from Problem 35(c) can be used for finding $\int_{-\infty}^{\infty} e^{-x^2/2} dx$. To see this, let $I = \int_{0}^{\infty} e^{-x^2/2} dx$, then

$$1 = \int_{R^2} f_{X,Y}(x,y)d(x,y) = cI^2,$$

so $I=1/\sqrt{c}$ and $\int_{-\infty}^{\infty}e^{-x^2/2}dx=2I=2/\sqrt{c}$ (you should be able to obtain $2/\sqrt{c}=\sqrt{2\pi}$ if your answer for c is correct).

36. (10 pts) Let Γ be the function on $(0,\infty)$ defined by

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$

for a > 0. Suppose that α and β are two positive constants and (X,Y) has joint PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} e^{-x} I_{(0,\infty)}(x) y^{\beta-1} e^{-y} I_{(0,\infty)}(y)$$

for $(x,y) \in \mathbb{R}^2$.

(a) (4 pts) Let M be the function on $(-\infty, 1) \times (-\infty, 1)$ defined by

$$M(t_1, t_2) = \left(\frac{1}{1 - t_1}\right)^{\alpha} \left(\frac{1}{1 - t_2}\right)^{\beta}$$

for $(t_1, t_2) \in (-\infty, 1) \times (-\infty, 1)$. Show that M is the joint MGF of (X, Y).

- (b) (2 pts) Find the MGF of X.
- (c) (4 pts) Find E(XY) and E(X).
- 37. (2 pts) Consider the (X,Y) in Problem 36. The distribution of X is called the gamma distribution with shape parameter α and scale parameter 1, denoted by $\Gamma(\alpha,1)$. Show that the distribution of (X+Y) is $\Gamma(\alpha+\beta,1)$. Hint: the MGF of (X+Y) can be easily obtained from the MGF of (X,Y).
- 38. (8 pts) Suppose that (X,Y) has a joint PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = cI_S(x,y)$$

for $(x, y) \in \mathbb{R}^2$,

$$S = \{(x, y) : -2 < x + 2y < 2 \text{ and } -2 < x - 2y < 2\},\$$

and $c = 1/\int_{R^2} I_S(x, y) d(x, y)$.

- (a) (4 pts) Find E(X|Y). You may leave c in your answer.
- (b) (4 pts) Find Var(X|Y). You may leave c in your answer.
- 39. (16 pts) Suppose that (X, Y) is a discrete random vector with PMF $p_{X,Y}$, where

$$P((X,Y) = (x,y)) = \begin{cases} 0.5 & \text{if } (x,y) = (1,2); \\ 0.4 & \text{if } (x,y) = (0,-3); \\ 0.1 & \text{if } (x,y) = (1,-3); \\ 0 & \text{otherwise.} \end{cases}$$

- (a) (8 pts) Find E(X|Y=y) and Var(X|Y=y) for $y \in \{2, -3\}$.
- (b) (8 pts) Find Var(E(X|Y)), E(Var(X|Y)) and Var(X). Verify the equality

$$Var(X) = Var(E(X|Y)) + E(Var(X|Y))$$

based on your answers.

40. (4 pts) Verify Equation (1) in the handout "Independence of two random vectors". That is, for $\mu \in R$, $\sigma > 0$, $s \in R$, $t = (t_1, t_2, t_3)^T \in R^3$, show that

$$\sum_{i=1}^{3} \left[\mu \left(t_i + \frac{s - 3\bar{t}}{3} \right) + 0.5\sigma^2 \left(t_i + \frac{s - 3\bar{t}}{3} \right)^2 \right]$$
$$= \mu \cdot s + \frac{\sigma^2 s^2}{6} + 0.5\sigma^2 \sum_{i=1}^{3} (t_i - \bar{t})^2,$$

where $\bar{t} = (t_1 + t_2 + t_3)/3$.

41. (4 pts) Suppose that (X, Y) has a joint PDF and X and Y are independent. Suppose that u and v are functions such that E(u(X)) and E(v(Y)) are finite. Show that

$$E(u(X)v(Y)) = E(u(X))E(v(Y)).$$

42. (4 pts) Consider the (X,Y) in Problem 36. Determine whether X+Y and X-Y are independent based on the MGF of (X,Y).

- 43. (4 pts) Consider the (X, Y) in Problem 39. Determine whether X and Y are independent.
- 44. (4 pts) Suppose that μ and σ are constants, $\sigma > 0$, and X is a random variable such that

$$E(e^{tX}) = e^{\mu t + 0.5\sigma^2 t^2}$$

for $t \in R$. Find E(X) and Var(X).

45. (4 pts) Suppose that X and Y are discrete random variables, X has m possible values x_1, \ldots, x_m , and Y has n possible values y_1, \ldots, y_n . Suppose that for $x \in \{x_1, \ldots, x_m\}$,

$$P(X = x | Y = y_1) = P(X = x | Y = y_2) = \dots = P(X = x | Y = y_n).$$

Show that X and Y are independent.

Note.

- For a random variable X, if the distribution of X is \mathcal{D} , we will write $X \sim \mathcal{D}$.
- The normal distribution with mean μ and variance σ^2 will be denoted by $N(\mu, \sigma^2)$.
- 46. (4 pts) Suppose that X is a random variable and $X \sim N(\mu, \sigma^2)$. Suppose that Y = a + bX for some constants a and b and $b \neq 0$. Show that $Y \sim N(E(Y), Var(Y))$. You may use the MGF of a normal distribution given in Example 4 in the handout "Independent random variables".
- 47. (10 pts) For $\mu \in R$ and $\sigma > 0$, let $f_{\mu,\sigma}$ be the function defined by

$$f_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$
 (3)

for $x \in R$. Suppose that X and Y are two random variables such that $Y \sim N(0,1)$ and for $y \in R$, $f_{1+2y,1}$ is a version of the conditional PDF of X given Y = y.

- (a) (6 pts) Find E(Y|X).
- (b) (4 pts) Determine whether X and Y are independent. Justify your answer.

Note. We will refer the $f_{\mu,\sigma}$ in (3) as the continuous PDF of $N(\mu,\sigma^2)$.

48. (8 pts) Suppose that Z_1 , Z_2 , Z_3 are independent random variables and $Z_i \sim N(0,1)$ for i=1,2,3. Let

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \end{pmatrix}.$$

- (a) (4 pts) Find a PDF of (Y_1, Y_2, Y_3) .
- (b) (4 pts) Determine whether Y_1 and (Y_2, Y_3) are independent. Justify your answer.

49. (4 pts) Suppose that Z_1, \ldots, Z_n are independent random variables and $Z_i \sim N(0,1)$ for $i=1, 2, \ldots, n$. Suppose that A is an $n \times n$ invertible matrix of constants in R and μ_1, \ldots, μ_n are constants in R. Let

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = A \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}.$$

Find a PDF of $(Y_1, ..., Y_n)$ that is determined by AA^T and $\mu_1, ..., \mu_n$. You may use results from linear algebra such as $\det(B^T) = \det(B)$ and

$$\det(BC) = \det(B) \cdot \det(C)$$

for square matrices B and C. Here $\det(A)$ denotes the determinant of a square matrix A.

Note. The distribution of (Y_1, \ldots, Y_n) is known as a multivariate normal distribution.

50. (8 pts) Suppose that (X, Y, Z) is a random vector with joint PDF $f_{X,Y,Z}$, where

$$f_{X,Y,Z}(x,y,z) = ce^{-(x^2+4xy+5y^2)}ze^{-z}I_{(0,\infty)}(z)$$

for $(x, y, z) \in \mathbb{R}^3$, and c > 0 is a constant.

- (a) (6 pts) Find E(X|Y) and Var(X|Y).
- (b) (2 pts) Find a version of the conditional PDF of Z given (X,Y) = (x,y) for $(x,y) \in \mathbb{R}^2$.
- 51. (6 pts) Suppose that X and Y are random variables such that Var(X) and Var(Y) are both finite and Var(X) > 0. Define a function S by

$$S(a,b) = E(Y - (a+bX))^2$$

for $(a,b) \in \mathbb{R}^2$. Show that S is minimized when $(a,b) = (a_0,b_0)$, where $b_0 = Cov(X,Y)/Var(X)$ and $a_0 = E(Y) - b_0E(X)$. Also, show that

$$S(a_0, b_0) = \frac{Var(X)Var(Y) - (Cov(X, Y))^2}{Var(X)}.$$
 (4)

Note. (4) implies that $|Corr(X,Y)| \leq 1$ since $S(a_0,b_0) = Var(Y)(1 - (Corr(X,Y))^2)$.

52. (6 pts) Suppose that (X, Y) is a vector of two discrete random variables with joint PMF $p_{X,Y}$, where

$$p_{X,Y}(x,y) = \begin{cases} 0.5 & \text{if } (x,y) = (1,2); \\ 0.4 & \text{if } (x,y) = (0,a); \\ 0.1 & \text{if } (x,y) = (-1,-2); \\ 0 & \text{otherwise,} \end{cases}$$

and a is a constant.

- (a) (4 pts) Express Corr(X, Y) as a a function of a.
- (b) (2 pts) Find all a's such that |Corr(X,Y)| = 1.

53. (6 pts) Suppose that (X, Y) is a random vector with covariance matrix Σ , where

$$\Sigma = \left(\begin{array}{cc} 1 & a \\ a & 0.25 \end{array}\right)$$

and a is a constant.

- (a) (2 pts) Express Corr(X, Y) as a function of a.
- (b) (4 pts) Find a constant b such that Var(X bY) = 0 when a = 0.5.

Note. In the above problem, it is clear that Corr(X, Y) = 1 when a = 0.5, so there is a linear relation between X and Y. Suppose that the linear relation is X = bY + c, then Var(X - bY) = 0.

54. (3 pts) Suppose that $\boldsymbol{X}=(X_1,X_2,X_3,X_4)^T$ is a random vector with covariance matrix Σ , where

$$\Sigma = \left(\begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

Find $Var(X_1+X_2+X_3)$ by finding a matrix A such that $AX = (X_1+X_2+X_3)$ and then applying Fact 2 in the handout "Covariance and correlation".

55. (4 pts) Suppose that (X,Y) has a joint PDF, f_Y is a PDF of Y and $f_{X|Y=y}$ is a version of the conditional PDF of X given Y=y for $y \in S_Y=\{y:f_Y(y)>0\}$. Then for g such that E(g(X,Y)) is finite, E(g(X,Y)|Y) can be obtained using

$$E(g(X,Y)|Y=y) = \int g(x,y)f_{X|Y=y}(x)dx$$
 (5)

for all $y \in S_Y$. Use (5) to show that E(XY|Y) = YE(X|Y) when E(XY) and E(X) are finite.

- 56. (12 pts) Consider the random vector (X, Y, Z) in Problem 50.
 - (a) (2 pts) Find E(Z|X,Y).
 - (b) (4 pts) Find a version of the conditional PDF of X given Y = y for $y \in R$.
 - (c) (4 pts) Find Cov(X, Y).
 - (d) (2 pts) Determine whether X and Y independent and justify your answer.
- 57. (4 pts) Suppose that X and Y are random variables such that $Y \sim N(0, 1)$ and a version of the conditional PDF of X given Y = y is g_y , where g_y is the function $f_{\mu,\sigma}$ given in (3) with $\mu = y$ and $\sigma = 1$. Find a version of the conditional PDF of Y given X = x for $x \in R$.
- 58. (6 pts) Suppose that $\boldsymbol{X} = (X_1, \dots, X_m)^T$ and $Y = (Y_1, \dots, Y_n)^T$ are two random vectors. Then the covariance matrix for the pair $(\boldsymbol{X}, \boldsymbol{Y})$ is defined to be the matrix

$$E((\boldsymbol{X}-\boldsymbol{\mu}_1)(\boldsymbol{Y}-\boldsymbol{\mu}_2)^T),$$

where $\mu_1 = E(X)$ and $\mu_2 = E(Y)$. We denote the covariance matrix for (X, Y) by Cov(X, Y).

(a) (3 pts) Suppose that \boldsymbol{a} and \boldsymbol{b} are constant column vectors of length m and n respectively. Show that

$$Cov(X + a, Y) = Cov(X, Y) = Cov(X, Y + b).$$

(b) (3 pts) Suppose that A and B are constant matrice with numbers of columns m and n respectively. Show that

$$Cov(AX, BY) = ACov(X, Y)B^{T}.$$

Note.

- The (i, j)-th element of Cov(X, Y) is $Cov(X_i, Y_j)$ for $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$.
- Cov(X, X) is the covariance matrix of X defined in the handout "Covariance and correlation".
- Based on the results of this problem, the covariance matrix of AX + b is

$$Cov(AX + b, AX + b) = ACov(X, X)A^{T},$$

which is the result given in Fact 2 in the handout "Covariance and correlation".

59. (6 pts) Suppose that $\boldsymbol{X} = (X_1, X_2, X_3, X_4)^T$ is a random vector with $E(\boldsymbol{X}) = (0, 0, 0, 0)^T$ and covariance matrix Σ , where

$$\Sigma = \left(\begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

- (a) (3 pts) Find the best linear predictor of $(X_1, X_4)^T$ based on X_2 and X_3 .
- (b) (3 pts) Suppose that $X \sim N(E(X), \Sigma)$. Find $E(X_1X_2|X_3, X_4)$.
- 60. (3 pts) Suppose that $Y, X_1, ..., X_k$ are random variables with finite means and variances. For $(b_1, ..., b_k) \in \mathbb{R}^k$, define

$$S(b_1, \dots, b_k) = E[(Y - (b_1X_1 + \dots + b_kX_k))^2].$$

Show that

$$\frac{\partial}{\partial b_i}S(b_1,\ldots,b_k) = E\left[\frac{\partial}{\partial b_i}(Y - (b_1X_1 + \cdots + b_kX_k))^2\right]$$

for $i \in \{1, ..., k\}$.

Hint: express $(Y - (b_1X_1 + \cdots + b_kX_k))^2$ as $(b_iX_i + U_i)^2$ for some random variable U_i that does not depend on b_i .

61. (6 pts) Suppose that Y, X and U are random vectors in \mathbb{R}^m , \mathbb{R}^n , \mathbb{R}^m respectively such that X and U are independent and

$$Y = g(X) + U \tag{6}$$

for some function $g: R^n \to R^m$. Suppose that g is differentiable, and X has a PDF f_X that is positive on R^n . Suppose that f_U is a PDF U respectively. For $x \in R^n$, define

$$f_{Y|X=x}(y) = f_U(y - g(x)) \tag{7}$$

for $y \in \mathbb{R}^m$. Show that $f_{Y|X=x}$ is a version of the conditional PDF of Y given X = x for $x \in \mathbb{R}^n$.

Note. When the distribution of (X, Y) is a multivariate normal distribution, let g(X) be the best linear predictor of Y based on X, then (6) holds with U = Y - g(X) and X and U are independent by Fact 3 in the handout "Multivariate normal distributions". From the result of Problem 61, a version of the conditional PDF of Y given X = x is the $f_{Y|X=x}$ given in (7) with f_U being the $N(\mu, \Sigma)$ PDF in Equation (2) in the handout "Multivariate normal distributions", where $\mu = (0, \dots, 0)^T \in \mathbb{R}^m$ and Σ is the covariance matrix of U. This the result stated in Fact 4 (ii) in the handout "Multivariate normal distributions".

62. (8 pts) Suppose that $\mathbf{X} = (X_1, X_2, X_3, X_4, X_5)^T$ is a random vector with $E(\mathbf{X}) = (1, 2, 3, 4, 5)^T$ and covariance matrix Σ_0 , where

$$\Sigma_0 = \begin{pmatrix} 2 & 1 & 0.5 & 0 & 0 \\ 1 & 2 & 1 & 0.5 & 0 \\ 0.5 & 1 & 2 & 0 & 0 \\ 0 & 0.5 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Suppose that $X \sim N(E(X), \Sigma_0)$. For $\mu \in \mathbb{R}^m$ and an $m \times m$ covariance matrix Σ , let $f_{\mu,\Sigma}$ be the PDF of $N(\mu,\Sigma)$ defined by

$$f_{\boldsymbol{\mu},\Sigma}(\boldsymbol{x}) = (2\pi)^{-m/2} \left(\det(\Sigma) \right)^{-1/2} e^{-(\boldsymbol{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x}-\boldsymbol{\mu})/2}$$
(8)

for $\boldsymbol{x} \in R^m$.

- (a) (6 pts) For $(x_3, x_4, x_5) \in R^3$, find μ and Σ so that the PDF $f_{\mu,\Sigma}$ given in (8) is a version of the conditional PDF of (X_1, X_2) given $(X_3, X_4, X_5) = (x_3, x_4, x_5)$.
- (b) (2 pts) Find a version of the conditional PDF of X_5 given $(X_1, X_2, X_3, X_4) = (x_1, x_2, x_3, x_4)$ for $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$.
- 63. (4 pts) Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, \sigma^2)$, where $\mu \in R$ and $\sigma > 0$ are unknown. Let $\bar{X} = \sum_{i=1}^n X_i/n$, $\bar{Y} = \sum_{i=1}^n X_i^2/n$, and $\bar{Z} = \sum_{i=1}^n (X_i \mu)^2/n$. Which of the following statements are true? You may write down your answers directly without justification.
 - (a) \bar{X} is a consistent estimator of μ .
 - (b) $\bar{Y} (\bar{X})^2$ is a consistent estimator of σ^2 .
 - (c) \bar{Z} is a consistent estimator of σ^2 .
 - (d) \bar{Z} converges to σ^2 in probability as $n \to \infty$.
- 64. (4 pts) Suppose that $\{X_n\}_{n=1}^{\infty}$ and $\{Y_n\}_{n=1}^{\infty}$ are two sequences of random variables such that $X_n \stackrel{P}{\to} \mu_1$ and $Y_n \stackrel{P}{\to} \mu_2$ as $n \to \infty$, where μ_1 and μ_2 are constants. Show that

$$\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \stackrel{P}{\to} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \text{ as } n \to \infty.$$

Hint: find a constant k > 0 such that

$$\sqrt{(X_n - \mu_1)^2 + (Y_n - \mu_2)^2} \le k(|X_n - \mu_1| + |Y_n - \mu_2|)$$

and then use the inequality to provide an upper bound for

$$P(\sqrt{(X_n - \mu_1)^2 + (Y_n - \mu_2)^2} > \varepsilon)$$

using $P(|X_n - \mu_1| > \varepsilon_1)$ and $P(|Y_n - \mu_2| > \varepsilon_2)$ for some properly chosen ε_1 and ε_2 .

65. (4 pts) Suppose that (X_1, \ldots, X_n) is a random sample from $U(0, \theta)$, where $\theta > 0$. Find a consistent estimator of $1/\theta$ and justify your answer.