Range of a transformed variable

- Suppose that X is a random variable such that $P(X \in S_X) = 1$, then S_X can be viewed as a range of X. Suppose that Y = g(X) and g is a one-to-one function, then a range of Y is $S_Y = \{g(x) : x \in S_X\}$. Below we consider some conditions under which S_Y can be easily found.
- Case 1. Suppose that g'(x) > 0 for $x \in S_X = (a, b)$, and both $L_1 = \lim_{x \to a^+} g(x)$ and $L_2 = \lim_{x \to b^-} g(x)$ can be defined, then $S_Y = (L_1, L_2)$.
 - If $a = -\infty$, then $L_1 = \lim_{x \to a^+} g(x)$ should be replaced by $L_1 = \lim_{x \to -\infty} g(x)$.
 - If $b = \infty$, then $L_2 = \lim_{x \to b^-} g(x)$ should be replaced by $L_2 = \lim_{x \to \infty} g(x)$.
- Case 2. Suppose that g'(x) < 0 for $x \in S_X = (a, b)$, and both $L_1 = \lim_{x \to a^+} g(x)$ and $L_2 = \lim_{x \to b^-} g(x)$ can be defined, then $S_Y = (L_2, L_1)$.
 - If $a = -\infty$, then $L_1 = \lim_{x \to a^+} g(x)$ should be replaced by $L_1 = \lim_{x \to -\infty} g(x)$.
 - If $b = \infty$, then $L_2 = \lim_{x \to b^-} g(x)$ should be replaced by $L_2 = \lim_{x \to \infty} g(x)$.
- If g'(x) does not exist or g'(x) = 0 for some $x \in (a, b)$, then divide the interval (a, b) into disjoint sub-intervals using the points at which g' = 0 or g' does not exist as break points.
- If S_X is a union of k disjoint open intervals I_1, \ldots, I_k , then $S_Y = \bigcup_{i=1}^k \{g(x) : x \in I_i\}.$
- Example 1. Suppose that $P(X \in (-1, 1)) = 1$ and Y = X/(1+X). Find $S_Y = \{x/(1+x) : x \in (-1, 1)\}.$ Ans. $S_Y = (-\infty, 1/2).$
- Example 2. Suppose that $P(X \in (0, \infty)) = 1$ and $Y = 1 e^{-X}$. Find $S_Y = \{1 e^{-x} : x \in (0, \infty)\}.$

Ans. $S_Y = (0, 1)$.

• Example 3. Suppose that $P(X \in (0,1) \cup (1,\infty)) = 1$ and Y = g(X), where $(x) \quad \text{if } x \in (0,1);$

$$g(x) = \begin{cases} x & \text{if } x \in (0, 1), \\ e^x & \text{if } x \in (1, \infty). \end{cases}$$

Find $S_Y = \{g(x) : x \in (0, 1) \cup (1, \infty)\}.$ Ans. $S_Y = (0, 1) \cup (e, \infty).$ • Example 4. Suppose that $P(X \in (0, \infty)) = 1$ and Y = g(X), where

$$g(x) = \begin{cases} x & \text{if } x \in (0,1]; \\ 1+1/x & \text{if } x \in (1,\infty). \end{cases}$$

Find $S_Y = \{g(x) : x \in (0, \infty)\}.$ Ans. $S_Y = (0, 2).$

It can be helpful to plot the graph of y = g(x) for x ∈ S_X using software like R. The R command for plot y = g(x) for x ∈ (a, b) is curve(g,a,b). R can be downloaded from its official website at

https://cran.r-project.org

• Example 5. Consider the function g in Example 4. Plot the graph of y = g(x) for $x \in (0, 4)$ using R.

Sol. Running the following R codes gives the plot required.

```
g <- function(x){
  ans1 <- x
  ans2 <- 1+1/x
  ans1[x>1] <- ans2[x>1]
  return(ans1)
}
curve(g, 0, 4)
```