Open sets in \mathbb{R}^n

• Definition of an open ball in \mathbb{R}^n . For $\mathbf{a} \in \mathbb{R}^n$ and $\delta > 0$, the open ball centered at \mathbf{a} with radius δ is the set

$$\{\boldsymbol{x} \in R^n : \|\boldsymbol{x} - \boldsymbol{a}\| < \delta\},\$$

where for $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$,

$$\|x - a\| = \sqrt{\sum_{i=1}^{n} (x_i - a_i)^2}$$

is the Euclidean distance between \boldsymbol{x} and $\boldsymbol{a}.$

- We will use $B(a, \delta)$ to denote the open ball centered at a with radius δ .
- Definition of an interior point (內點) of a set in \mathbb{R}^n . Suppose that $S \subset \mathbb{R}^n$ and $\mathbf{a} \in S$. If there exists some $\delta > 0$ such that $B(\mathbf{a}, \delta) \subset S$, then \mathbf{a} is called an interior point of S.
 - Example. Every point in the open interval (0,1) is an interior point of (0,1).
- Definition of a boundary point (邊界點) of a set in \mathbb{R}^n . Suppose that $S \subset \mathbb{R}^n$ and $\mathbf{a} \in \mathbb{R}^n$. If for every $\delta > 0$, $B(\mathbf{a}, \delta)$ contains some point outside S and some point in S, then \mathbf{a} is called a boundary point of S. Note.
 - A boundary point of S may or may not belong to S. For instance, both 0 and 1 are boundary points of the interval [0,1), yet $0 \in [0,1)$ and $1 \notin [0,1)$.
- Definition of an open set in \mathbb{R}^n . For $S \subset \mathbb{R}^n$, S is called an open set in \mathbb{R}^n if and only if every point in S is an interior point of S.
 - Note that an open set does not contain any of its boundary points by definition.
- Example 1. An open ball in \mathbb{R}^n is an open set in \mathbb{R}^n .

To see that an open ball in R^n is an open set in R^n , consider the open ball $B(\boldsymbol{a}, \delta)$, where $\boldsymbol{a} \in R^n$ and $\delta > 0$. For $\boldsymbol{x} \in B(\boldsymbol{a}, \delta)$, we will show that \boldsymbol{x} is an interior point of $B(\boldsymbol{a}, \delta)$. Take

$$\delta_1 = \delta - \|\boldsymbol{x} - \boldsymbol{a}\|,$$

then $\delta_1 > 0$ and for $\boldsymbol{y} \in B(\boldsymbol{x}, \delta_1)$,

$$\|y - a\| \le \|y - x\| + \|x - a\| < \delta_1 + \|x - a\| = \delta$$
,

so $\boldsymbol{y} \in B(\boldsymbol{a}, \delta)$. Therefore, $B(\boldsymbol{x}, \delta_1) \subset B(\boldsymbol{a}, \delta)$ and \boldsymbol{x} is an interior point of $B(\boldsymbol{a}, \delta)$. Since for every $\boldsymbol{x} \in B(\boldsymbol{a}, \delta)$, \boldsymbol{x} is an interior point of $B(\boldsymbol{a}, \delta)$, the open ball $B(\boldsymbol{a}, \delta)$ is an open set in R^n .

• To determine whether a set in \mathbb{R}^n contains a nonempty open set in \mathbb{R}^n , the following result is useful.

Fact 1 Suppose that $S \subset \mathbb{R}^n$. Then

S contains a nonempty open set in $\mathbb{R}^n \iff S$ contains an open ball in \mathbb{R}^n

Proof of Fact 1. Since an open ball in R^n is a nonempty open set in R^n , the " \Leftarrow " direction holds true clearly. We only need to prove the " \Rightarrow " direction. Suppose that S contains a nonempty open set B in R^n . Let \boldsymbol{x} be a point in B, then \boldsymbol{x} is an interior point of B since B is open. Therefore, there exists $\delta > 0$ such that $B(\boldsymbol{x}, \delta) \subset B \subset S$, and S contains the open ball $B(\boldsymbol{x}, \delta)$. The proof of the " \Rightarrow " direction is complete.