Maximum likelihood estimation

e Suppose that (X1,...,X,,) is a sample with joint PMF (or joint PDF) fy,
where the parameter vector 6 is in a known space ©. For n € O, define
L(n) = fr(Xy, ..., Xn), (1)

then L is called the likelihood function (A4 % #) based on the sample
(X1,...,X,). Suppose that L attains it maximum on O at 6, then 6 is
called the maximum likelihood estimator (MLE; 3 K#EAAAE 3t &) of 6
(assuming the maximizer is unique). That is,

6= L(n).
arg max (n)

— Suppose that we observe (X1,...,X,) = (z1,...,2,) and define L
according to (1) with (Xy,...,X,) replaced by (z1,...,z,), then
the function L is called the observed likelihood function, and the
maximizer of L is called the (observed) MLE of 6.

e Example 1. Suppose that (Xi,...,X,) is a random sample and X; ~
Bin(1,p) and p € [0,1]. Find the MLE of p based on the sample (X7,..., X,).

Sol. Let px be the PMF of X, then for z € {0,1},
{ P if z =1;

px (@) 1-p ifz=0.

= p'(l-p)"
Let f, be the joint PMF of (Xi,...,X,,), then for z1, ..., z, € {0,1},

fp(xl, ceeyTy) = HpX(:L'i) = ijzl T (1-— p)"*zz;l Ti
i=1

Let L be the likelihood function based on (X1, ..., X,,), then
L(g) = fo(X1,...,X5)
S SR TSy
= g

for ¢ € [0,1], where X is the sample mean Y ., , X;/n. Computing the
derivative of log L and we have for ¢ € (0,1),

d n(X —q)

— log(L _

o losl@) = a2
>0 if0<qg<X;
=0 ifg=X;

<0 ifX<g<l.

Thus log L attains its maximum on (0,1) at X and so is L. It is clear that
L does not attain its maximum at 0 or 1, so L attains its maximum on
[0,1] at X. The MLE of p is X.



e Example 2. Suppose that (Xi,...,X10) is a random sample and X; ~
Bin(1,p)and p € {0.1,0.5,0.8}. Suppose that we observe that (X1, ..., Xg) =
(0,...,0) and (X7,...,X30) = (1,...,1). Find the observed MLE of p.
The output after running the following R commands

q <= ¢(0.1, 0.5, 0.8)
q~4*(1-q9) "6

is

[1] 0.0000531441 0.0009765625 0.0000262144

Sol. The observed likelihood function L is given by
L(g) =q'(1—q)°

for ¢ € {0.1,0.5,0.8}. From the R output, L(0.5) > L(0.1) > L(0.8), so
the observed MLE of p is 0.5.

Example 3. Suppose that (Xi,...,X,) is a random sample and X; ~
N(0,0), where 6 > 0. Find the MLE of 6 based on (X3, ..., X,).

Sol. A PDF of (X1,...,X,) is fo, where

n
1 2
fo(za,...,zp) = H e~/ (20)
o ver

>

for (z1,...,x,) € R™. Let L be the likelihood function based on (X7, ..., X,),
then

L(n) = fT](X17"'aXn)
LY -5 xeen
V27

for n > 0. Computing the derivative of log L and we have for n > 0,

Tog(tn) = o (B2 )

S0 i< X X2
=0 ifn=>1,X2/n;
<0 if YU XP/n<n.

Thus log L attains its maximum on (0,00) at >, X2/nand > 1 | X?/n
is the MLE of 6.

To see why MLE is a reasonable estimator, note that for L(n) defined in
(1), log L(n)/n converges to Elog f,(X1) by SLLN. It can be shown by
Jensen’s inequality that

Elog f,(X1) < Elog fo(X) (2)



for n € © when X; has PDF fy. Since

0 = argmax FE'log f,,(X1)
neoe

and Elog f,(X1) ~ log L(n)/n, it makes sense to estimate 6 using

0= log L(n).
argmax log (n)

Convex function. A function ¢ defined on an open interval I is convex
means that for any two points a, b € I such that a < b,

p(ta+ (1 —1)b) < tp(a) + (1 = t)p(b)
for t € [0, 1].
— If for any two points a, b € I such that a < b,

o(ta+ (1 —t)b) < te(a) + (1 —t)p(b)

for t € (0,1),  is strictly convex on I.
— If ¢ > 0 on I, then ¢ is strictly convex on I.
Jensen’s inequality. Suppose that ¢ is a convex function on an open
interval I and X is a random variable that takes values in I and E(X) is

finite. Then
Ep(X) > o(E(X)).

Moreover, if ¢ is stricly convex on I, then Ep(X) = @(E(X)) only if
P(X=EX)) =1.

Apply Jensen’s inequality with ¢ = —log and we have

i (445) e (445 -

so Elog f,(X1) < Elog fy(X1) and (2) holds.




