Estimation based on IID data

e Recall: IID = Independent and Identically Distributed (¥ s Fl %~ #).
Random vectors X, ..., X,, are IID means they are independent and
have the same distribution.

e When we have IID data Xy, ..., X,, (X1, ..., X,) is called a random
sample and n is called the sample size of the random sample. We would
like to learn about the distribution of X; (or some quantities related to
the distribution such as mean or variance for the univariate case) based
on the sample. Below we will focus on the univariate case where each X
is a random variable.

e Strong Law of Large Numbers (SLLN, 5 K %% 2]). Suppose that X7, ...,
X, ... are IID random variables and E(X7) is finite. Let X = >"" | X;/n,
then

P ( lim X = E(X1)> — 1 (1)

n—oo

Note.

— (1) implies the following result:

lim P (| X — E(X1)| >¢) =0foralle >0. (2)

n—oo

e A version of Weak Law of Large Numbers (WLLN, 55 K #& Rl) is given
in Theorem 5.1.1 in the text.

Fact 1 (Theorem 5.1.1 in the text) Suppose that Xy, ..., Xy, ... are
IID random wvariables and E(X1) and Var(Xy) are finite. Let X =
Yo, Xi/n, then (2) holds.

Note.
— The proof of Fact 1 can be based on Chebyshev’s inequality or Markov’s
inequality (Homework Problem 65 last semester).
— Since (1) implies (2), the assumption that Var(X;) is finite is not
needed in Fact 1.
— When (2) holds, we say that X converges to E(X;) in probability,
denoted by X 5 E(X;).
e Convergence in probability. Suppose that Y, Y7, Y5, ... are random vec-
tors. If
lim P(]|]Y, =Y >¢)=0forall e >0,
n— oo
then we say that Y,, converges to Y in probability (as n — c0), denoted
by Y, 5 Y. Here Il - || denotes the Euclidean norm.



Suppose that we use a statistic T, to estimate some quantity 6, where n
is the sample size. If T, Epasn— oo, then T, is called a consistent
estimator of 0 (T, B8 —HAEZT ).

Note that an estimator must be a statistic, which can be computed given
the data.

Example 1. Suppose that we have IID data Xy, ..., X,, and p = E(X3)
is finite. Which of the following statements are true?

(a) i, X;/n is a consistent estimator of .

(b) 1+ >, X;/nis a consistent estimator of 1 + .

(¢) p+> 1, X;/nis a consistent estimator of 2.

Ans. (a)(b)

Example 2. Suppose that we have IID data X1, ..., X, and the possible
values of X; are ai,ao,...,a,,. Let ny be the number of X;s that are
equal to a;. Then nj/n is a consistent estimator of P(X; = ay).

Example 3. Suppose that we have IID data X3, ..., X,,, X7 takes values
in an interval (—oo0,00), and X; has a PDF f. Suppose that |f/| is
bounded above by a constant M on (—oo, 00). Suppose that {h,}52; is a
sequence of positive numbers such that

lim h, =0and lim nh, = oco.
n—oo n—oo

Divide (—o0, o) into disjoint segments of the form (¢, ¢+ hy,] using break
points in {kh,: k € {0,+1,+2,...}}. For a point xg € (—o00,0), let
(¢c,c+ hy] be the segment such that xg € (¢,c+ hy]. Let

v — 1 if X; € (c,c+ hyl;
10 X € (e,c by

Then Y, Y;/(nh,) is a consistent estimator of f(zo).
A sketch of proof. We will first show that

lim B (Zn—ly - f(m0)>2 —0 (3)

n—o0 nhy,

and then apply Markov’s inequality to show that >, Y;/(nh,,) is a con-
sistent estimator of f(xg). Note that

p (et f(xo>)2

nhy,
~Var (Z:;Y - f(:co)) + (E (Zn—ly - f(:co))>2

nhy,
j2 2 ?
< A rmo_
= mz T (hn f(xo)) :




where p, = P(X; € (¢,c+ hy]). By the mean value theorem for integra-
tion, there exists ¢ € (¢, ¢+ hy,) such that

‘Z:z—f(%)

=1f(&) = f(xo)| < Mhy, =0

as n — 00, so (3) holds. For € > 0,

P(‘m—f(xo) >5> = P((Z%Lln—f(xo)>2>52>

nh,
S, i
E (n;:liq - f(ff()))

£2

IN

(Markov inequality)
(39 0 as n — oo,

so >, Yi/(nhy) is a consistent estimator of f(zo).

e In general, for T,: an estimator of some quantity 6, if lim, . E||T, —
0||* = 0 for some k > 0, then T}, is a consistent estimator of 6. The proof
is left as an exercise.

e Generating IID data using R

— The R command for generating n IID data from some distriubtion
is rxxxx, where xxxx is the abbreviation of the distribution name in
R. To find out the abbreviation, first run

help.search("Distribution$", package="stats", fields="title")

to obtain a list of distributions, and then run help(...), where ... is
the full name of a distribution. Then the abbreviation can be found.
For example, run

help("Normal")

Then, we can find that the R command for generating n IID data
from N(m,s?) is

rnorm(n, mean=m, sd=s)
and the (continuous) density for N(m, s?) evaluated at x is
dnorm(x, mean=m, sd=s)

e Estimating the density using a normalized histogram.

— For a normalized histogram, the height for each segment is count/(nh,,),
where n is the sample size, h,, is the segment length and count is the
number of observations in the segment.



— The R command for drawing a histogram based on data vector x
with break point vector bks is hist(x, breaks=bks). Omne can
use hist (x, breaks="scott") to determine break points based on
Scott’s suggestion. Running

hist(x, breaks="scott")
gives the same result as running the following R commands

nclass.scott <- function(x){

n <- length(x)

h <- 3.5%sd(x)*n"~(-1/3)

#sd(x) is the sample standard deviation of the sample x
d <- max(x)-min(x)

n.class <- ceiling(d/h)

return(n.class)

}

hist(x, nclass=nclass.scott)

— To draw a normalized histogram using the R command hist, add
the option freq=FALSE.

e Example 4. Generate n = 1000 IID data from the N(1,(1.1)2) distribu-
tion in R and plot the normalized histogram with break points determined
based on Scott’s suggestion.

Sol. The R commands for generating the required data and drawing the
histogram are given below:

n <- 1000
x <- rnorm(n, mean=1, sd=1.1)
hist(x, breaks="scott", freq=FALSE)

We can also add the continuous density of N(1,(1.1)?) for comparison:

#define the density
f <- function(x){

mu <- 1

sigma <- 1.1

z <- (x-mu)/sigma

ans <- exp(-z~2/2)/(sqrt(2*pi)*sigma)
return(ans)

}
#or
#f <- function(x){ dnorm(x, mean=1, sd=1.1) }
curve(f, add=TRUE, col=2)

e Suppose we have IID data Xy, ..., X,, and the distribution of X; belongs
to some known familty (such as the family of univariate normal distri-
butions), then it is often possible to express the PDF or PMF of X; as



a function depending on some parameter vector 6. For example, if the
distribution of Xj is N(u,0?), then § = (u,0). In such case, we would
like to estimate 6 based on the data to learn about the distribution of Xj.
This is known as a parametric estimation problem.



