
Estimation based on IID data

• Recall: IID = Independent and Identically Distributed (獨立同分布).
Random vectors X1, . . ., Xn are IID means they are independent and
have the same distribution.

• When we have IID data X1, . . ., Xn, (X1, . . ., Xn) is called a random
sample and n is called the sample size of the random sample. We would
like to learn about the distribution of X1 (or some quantities related to
the distribution such as mean or variance for the univariate case) based
on the sample. Below we will focus on the univariate case where each Xi

is a random variable.

• Strong Law of Large Numbers (SLLN,強大數法則). Suppose that X1, . . .,
Xn, . . . are IID random variables and E(X1) is finite. Let X̄ =

∑n
i=1Xi/n,

then
P
(

lim
n→∞

X̄ = E(X1)
)

= 1. (1)

Note.

– (1) implies the following result:

lim
n→∞

P
(∣∣X̄ − E(X1)

∣∣ > ε
)

= 0 for all ε > 0. (2)

• A version of Weak Law of Large Numbers (WLLN, 弱大數法則) is given
in Theorem 5.1.1 in the text.

Fact 1 (Theorem 5.1.1 in the text) Suppose that X1, . . ., Xn, . . . are
IID random variables and E(X1) and V ar(X1) are finite. Let X̄ =∑n

i=1Xi/n, then (2) holds.

Note.

– The proof of Fact 1 can be based on Chebyshev’s inequality or Markov’s
inequality (Homework Problem 65 last semester).

– Since (1) implies (2), the assumption that V ar(X1) is finite is not
needed in Fact 1.

– When (2) holds, we say that X̄ converges to E(X1) in probability,

denoted by X̄
P→ E(X1).

• Convergence in probability. Suppose that Y , Y1, Y2, . . . are random vec-
tors. If

lim
n→∞

P (‖Yn − Y ‖ > ε) = 0 for all ε > 0,

then we say that Yn converges to Y in probability (as n → ∞), denoted

by Yn
P→ Y . Here ‖ · ‖ denotes the Euclidean norm.
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• Suppose that we use a statistic Tn to estimate some quantity θ, where n

is the sample size. If Tn
P→ θ as n → ∞, then Tn is called a consistent

estimator of θ (Tn為θ的一致估計量).

• Note that an estimator must be a statistic, which can be computed given
the data.

• Example 1. Suppose that we have IID data X1, . . ., Xn and µ = E(X1)
is finite. Which of the following statements are true?

(a)
∑n

i=1Xi/n is a consistent estimator of µ.

(b) 1 +
∑n

i=1Xi/n is a consistent estimator of 1 + µ.

(c) µ+
∑n

i=1Xi/n is a consistent estimator of 2µ.

Ans. (a)(b)

• Example 2. Suppose that we have IID data X1, . . ., Xn and the possible
values of X1 are a1, a2, . . . , am. Let n1 be the number of Xis that are
equal to a1. Then n1/n is a consistent estimator of P (X1 = a1).

• Example 3. Suppose that we have IID data X1, . . ., Xn, X1 takes values
in an interval (−∞,∞), and X1 has a PDF　f . Suppose that |f ′| is
bounded above by a constant M on (−∞,∞). Suppose that {hn}∞n=1 is a
sequence of positive numbers such that

lim
n→∞

hn = 0 and lim
n→∞

nhn =∞.

Divide (−∞,∞) into disjoint segments of the form (c, c+ hn] using break
points in {khn: k ∈ {0,±1,±2, . . .}}. For a point x0 ∈ (−∞,∞), let
(c, c+ hn] be the segment such that x0 ∈ (c, c+ hn]. Let

Yi =

{
1 if Xi ∈ (c, c+ hn];
0 if Xi 6∈ (c, c+ hn].

Then
∑n

i=1 Yi/(nhn) is a consistent estimator of f(x0).

A sketch of proof. We will first show that

lim
n→∞

E

(∑n
i=1 Yi
nhn

− f(x0)

)2

= 0 (3)

and then apply Markov’s inequality to show that
∑n

i=1 Yi/(nhn) is a con-
sistent estimator of f(x0). Note that

E

(∑n
i=1 Yi
nhn

− f(x0)

)2

= V ar

(∑n
i=1 Yi
nhn

− f(x0)

)
+

(
E

(∑n
i=1 Yi
nhn

− f(x0)

))2

≤ pn
nh2n

+

(
pn
hn
− f(x0)

)2

,
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where pn = P (X1 ∈ (c, c + hn]). By the mean value theorem for integra-
tion, there exists ξ ∈ (c, c+ hn) such that∣∣∣∣ pnhn − f(x0)

∣∣∣∣ = |f(ξ)− f(x0)| ≤Mhn → 0

as n→∞, so (3) holds. For ε > 0,

P

(∣∣∣∣∑n
i=1 Yi
nhn

− f(x0)

∣∣∣∣ > ε

)
= P

((∑n
i=1 Yi
nhn

− f(x0)

)2

> ε2

)

≤
E

(∑n

i=1
Yi

nhn
− f(x0)

)2

ε2
(Markov inequality)

(3)→ 0 as n→∞,

so
∑n

i=1 Yi/(nhn) is a consistent estimator of f(x0).

• In general, for Tn: an estimator of some quantity θ, if limn→∞E‖Tn −
θ‖k = 0 for some k > 0, then Tn is a consistent estimator of θ. The proof
is left as an exercise.

• Generating IID data using R

– The R command for generating n IID data from some distriubtion
is rxxxx, where xxxx is the abbreviation of the distribution name in
R. To find out the abbreviation, first run

help.search("Distribution$", package="stats", fields="title")

to obtain a list of distributions, and then run help(...), where ... is
the full name of a distribution. Then the abbreviation can be found.
For example, run

help("Normal")

Then, we can find that the R command for generating n IID data
from N(m, s2) is

rnorm(n, mean=m, sd=s)

and the (continuous) density for N(m, s2) evaluated at x is

dnorm(x, mean=m, sd=s)

• Estimating the density using a normalized histogram.

– For a normalized histogram, the height for each segment is count/(nhn),
where n is the sample size, hn is the segment length and count is the
number of observations in the segment.
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– The R command for drawing a histogram based on data vector x

with break point vector bks is hist(x, breaks=bks). One can
use hist(x, breaks="scott") to determine break points based on
Scott’s suggestion. Running

hist(x, breaks="scott")

gives the same result as running the following R commands

nclass.scott <- function(x){

n <- length(x)

h <- 3.5*sd(x)*n^(-1/3)

#sd(x) is the sample standard deviation of the sample x

d <- max(x)-min(x)

n.class <- ceiling(d/h)

return(n.class)

}

hist(x, nclass=nclass.scott)

– To draw a normalized histogram using the R command hist, add
the option freq=FALSE.

• Example 4. Generate n = 1000 IID data from the N(1, (1.1)2) distribu-
tion in R and plot the normalized histogram with break points determined
based on Scott’s suggestion.

Sol. The R commands for generating the required data and drawing the
histogram are given below:

n <- 1000

x <- rnorm(n, mean=1, sd=1.1)

hist(x, breaks="scott", freq=FALSE)

We can also add the continuous density of N(1, (1.1)2) for comparison:

#define the density

f <- function(x){

mu <- 1

sigma <- 1.1

z <- (x-mu)/sigma

ans <- exp(-z^2/2)/(sqrt(2*pi)*sigma)

return(ans)

}

#or

#f <- function(x){ dnorm(x, mean=1, sd=1.1) }

curve(f, add=TRUE, col=2)

• Suppose we have IID data X1, . . ., Xn and the distribution of X1 belongs
to some known familty (such as the family of univariate normal distri-
butions), then it is often possible to express the PDF or PMF of X1 as
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a function depending on some parameter vector θ. For example, if the
distribution of X1 is N(µ, σ2), then θ = (µ, σ). In such case, we would
like to estimate θ based on the data to learn about the distribution of X1.
This is known as a parametric estimation problem.
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