Hypothesis Testing

• Suppose that $X = (X_1, ..., X_n)$ is a sample and the distribution of X is determined by θ , where $\theta \in \Theta$. Consider the testing problem

$$H_0: \theta \in \Theta_0 \text{ v.s. } H_1: \theta \in \Theta_0^c.$$
 (1)

A test for the testing problem in (1) is characterized by its rejection region (critical region). Suppose C is the rejection region of a test ϕ , then

test
$$\phi$$
 rejects $H_0 \Leftrightarrow X \in \mathcal{C}$.

• Example 1. Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, \sigma^2)$, where $\mu \in (-\infty, \infty)$ and $\sigma > 0$. Consider the testing problem

$$H_0: \mu \leq \mu_0 \text{ v.s. } H_1: \mu > \mu_0,$$

where μ_0 is a given constant. Suppose that $\alpha \in (0,1)$ is a given constant and test ϕ rejects H_0 if and only if

$$\frac{\sqrt{n}(\mu(X) - \mu_0)}{S(X)} > t_{\alpha, n-1},$$

where μ and S are function on \mathbb{R}^n defined by

$$\mu(x_1, \dots, x_n) = \frac{\sum_{i=1}^n x_i}{n}$$

and

$$S(x_1, \dots, x_n) = \sqrt{\frac{\sum_{i=1}^n (x_i - \mu(x_1, \dots, x_n))^2}{n-1}},$$

and $t_{\alpha,n-1}$ is the $(1-\alpha)$ quantile of t(n-1): the t distribution of (n-1) degrees of freedom. That is, $t_{\alpha,n-1}$ is the constant such that

$$P(t(n-1) > t_{\alpha,n-1}) = \alpha.$$

Write down the rejection region of ϕ .

Sol. The rejection region of ϕ is

$$\left\{x \in R^n : \frac{\sqrt{n}(\mu(x) - \mu_0)}{S(x)} > t_{\alpha, n-1}\right\}.$$

• Power function. Suppose that ϕ is a test for the testing problem in (1) with rejection region \mathcal{C} . Define a function β by

$$\beta(\theta) = P_{\theta}(X \in \mathcal{C})$$

for $\theta \in \Theta$. Then β is called the power function of ϕ , and

$$\sup_{\theta \in \Theta_0} \beta(\theta)$$

is called the size of the test ϕ . If the size of ϕ is less than or equal to α , ϕ is called a test of level α .

Example 2. Show that the test in Example 1 is of size α.
 Sol. Let β be the power function of the test, then

$$\begin{split} \beta(\mu,\sigma) &= P_{\mu,\sigma} \left(\frac{\sqrt{n}(\mu(X) - \mu_0)}{S(X)} > t_{\alpha,n-1} \right) \\ &= P_{\mu,\sigma} \left(\frac{\sqrt{n}(\mu(X) - \mu) + \sqrt{n}(\mu - \mu_0)}{S(X)} > t_{\alpha,n-1} \right). \end{split}$$

Under H_0 , $\mu \leq \mu_0$, so

$$\beta(\mu, \sigma) = P_{\mu, \sigma} \left(\frac{\sqrt{n}(\mu(X) - \mu) + \sqrt{n}(\mu - \mu_0)}{S(X)} > t_{\alpha, n-1} \right)$$

$$\leq P_{\mu, \sigma} \left(\frac{\sqrt{n}(\mu(X) - \mu)}{S(X)} > t_{\alpha, n-1} \right) = \alpha,$$
(2)

where the last equality holds since we have shown that

$$\frac{\sqrt{n}(\mu(X) - \mu)}{S(X)} \sim t(n - 1)$$

in Example 4 in the handout "Confidence intervals". Therefore, for all (μ, σ) such that $\mu \leq \mu_0$ and $\sigma > 0$, we have

$$\beta(\mu, \sigma) \le \alpha$$

which implies that

$$\sup_{(\mu,\sigma):\mu\leq\mu_0,\sigma>0}\beta(\mu,\sigma)\leq\alpha. \tag{3}$$

Moreover, when $\mu = \mu_0$ and $\sigma > 0$, from (2), we have

$$\beta(\mu_0, \sigma) = P_{\mu, \sigma} \left(\frac{\sqrt{n}(\mu(X) - \mu)}{S(X)} > t_{\alpha, n-1} \right) = \alpha,$$

which, together with (3), implies that

$$\sup_{(\mu,\sigma):\mu\leq\mu_0,\sigma>0}\beta(\mu,\sigma)=\alpha,$$

so the size of the test is α .

• A test can be constructed using a confidence interval.

Fact 1 Suppose that X is a sample and [L(X), U(X)] is a $(1-\alpha)$ C.I. of $g(\theta)$ based on X. Consider the testing problem

$$H_0: g(\theta) = \tau_0 \ v.s. \ H_1: g(\theta) \neq \tau_0.$$
 (4)

Define ϕ to be the test with rejection region

$$\{x : \tau_0 \not\in [L(x), U(x)]\},\$$

then ϕ is a level α test for the testing problem in (4).

Fact 1 holds true since under $H_0: g(\theta) = \tau_0$, the probability that ϕ rejects H_0 is

$$P_{\theta} (\tau_0 \notin [L(x), U(x)])$$

$$= P_{\theta} (g(\theta) \notin [L(x), U(x)]) \qquad (g(\theta) = \tau_0)$$

$$= 1 - P_{\theta} (g(\theta) \in [L(x), U(x)])$$

$$\leq 1 - (1 - \alpha) = \alpha.$$

• Example 3. Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, 1)$ and $\alpha \in (0, 1)$. Let $z_{\alpha/2}$ be the $(1 - \alpha/2)$ quantile of N(0, 1). That is,

$$P(N(0,1) > z_{\alpha/2}) = \alpha/2.$$

Let \bar{X} be the sample mean $\sum_{i=1}^{n} X_i/n$.

- (a) Show that $(\bar{X} z_{\alpha/2}/\sqrt{n}, \bar{X} + z_{\alpha/2}/\sqrt{n})$ is a (1α) C.I. of μ .
- (b) Consider the testing problem

$$H_0: \mu = 1 \text{ v.s. } H_1: \mu \neq 1.$$

Construct a level α test based on the C.I. in Part (a).

Sol.

(a) Since $\sqrt{n}(\bar{X} - \mu) \sim N(0, 1)$, we have

$$P\left(-z_{\alpha/2} < \sqrt{n}(\bar{X} - \mu) < z_{\alpha/2}\right) = 1 - \alpha,$$

which implies that

$$P(\mu \in (\bar{X} - z_{\alpha/2}/\sqrt{n}, \bar{X} + z_{\alpha/2}/\sqrt{n})) = 1 - \alpha,$$

so
$$(\bar{X} - z_{\alpha/2}/\sqrt{n}, \bar{X} + z_{\alpha/2}/\sqrt{n}))$$
 is a $(1 - \alpha)$ C.I. of μ .

(b) Let

$$C = \left\{ (x_1, \dots, x_n) \in R^n : 1 \notin \left(\frac{\sum_{i=1}^n x_i}{n} - \frac{z_{\alpha/2}}{\sqrt{n}}, \frac{\sum_{i=1}^n x_i}{n} + \frac{z_{\alpha/2}}{\sqrt{n}} \right) \right\},\,$$

then by Fact 1, the test with rejection region \mathcal{C} is a level α test.

• Most powerful test. Suppose that ϕ is a level α test for the testing problem in (1). If for every ϕ^* that is a level α test for (1),

$$\beta_{\phi}(\theta) \geq \beta_{\psi^*}(\theta)$$
 for every $\theta \in \Theta_0^c$,

then ϕ is called a most powerful test. Here β_{ϕ} and β_{ϕ^*} denote the power functions of ϕ and ϕ^* respectively.

• The existence of most power test is guaranteed by for a testing problem in (5).

Theorem. (Neyman-Pearson Lemma) Suppose that X is a sample with PDF (or PMF) f_{θ} , where $\theta \in \{\theta_0, \theta_1\}$. Consider the testing problem

$$H_0: \theta = \theta_0 \text{ v.s. } H_1: \theta = \theta_1. \tag{5}$$

For a constant k > 0, let ϕ to be a test for (5) with rejection region including

$${x: f_{\theta_1}(x) - k f_{\theta_0}(x) > 0}$$

but not including

$${x: f_{\theta_1}(x) - kf_{\theta_0}(x) < 0}.$$

Suppose that ϕ is of size α , then ϕ is a most powerful level α test.

The proof of Neyman-Pearson Lemma is based on the following inequaliaty:

$$(I_{\mathcal{C}}(x) - I_{\mathcal{C}^*}(x))(f_{\theta_1}(x) - kf_{\theta_0}(x)) \ge 0,$$

where C and C^* are rejection region of ϕ and another level α test ϕ^* respectively.

• Example 4. Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, 1)$, where $\mu \in \{1, 1.2\}$. Consider the testing problem

$$H_0: \mu = 1 \text{ v.s. } H_1: \mu = 1.2.$$
 (6)

- (a) Find a level α most powerful test for the testing problem in (6). Denote the most powerful test by ϕ_1 .
- (b) Let ϕ_2 be the test in Example 3. Is ϕ_2 also a level α test for the testing problem in (6)?
- (c) Let β_1 and β_2 be the power functions of ϕ_1 and ϕ_2 respectively. Find $\beta_1(1.2)$ and $\beta_2(1.2)$. Write down the R commands for computing $\beta_1(1.2) \beta_2(1.2)$ when n = 100 and $\alpha = 0.05$.

Ans.

(a) Let z_{α} be the $(1-\alpha)$ quantile of N(0,1) and let

$$C = \left\{ (x_1, \dots, x_n) \in R^n : \sqrt{n} \left(\frac{\sum_{i=1}^n x_i}{n} - 1 \right) > z_{\alpha} \right\}.$$

Then the test with rejection region C is a level α most powerful test for the testing problem in (6).

- (b) Yes, since the H_0 in this example is the same as the H_0 in Example 3.
- (c) $\beta_1(1.2) = P(N(0,1) > -0.2\sqrt{n} + z_\alpha)$ and

$$\beta_2(1.2) = 1 - P(-0.2\sqrt{n} - z_{\alpha/2} < N(0,1) < -0.2\sqrt{n} + z_{\alpha/2}).$$

The R commands for computing $\beta_1(1.2) - \beta_2(1.2)$ when n = 200 and $\alpha = 0.05$ are given below.

```
n <- 200
alpha <- 0.05
z1 <- qnorm(1-alpha)  #qnorm is the quantile function of N(0,1)
z2 <- qnorm(1-alpha/2)
c0 <- -0.2*sqrt(n)
c1 <- c0 + z1
c2 <- c0 - z2
c3 <- c0 + z2
beta1 <- 1-pnorm(c1)  #pnorm is the CDF of N(0,1)
beta2 <- 1-(pnorm(c3)-pnorm(c2))
beta1 - beta2  #answer</pre>
```

• Approximate most powerful test. Suppose that (X_1, \ldots, X_n) is a random sample from a distribution with PDF g_{θ} . Let $f_{\theta}(x_1, \ldots, x_n) = \prod_{i=1}^n g_{\theta}(x_i)$ for $(x_1, \ldots, x_n) \in \mathbb{R}^n$, then f_{θ} is a PDF of the sample. For k > 0, let

$$C = \{x : f_{\theta_1}(x) - k f_{\theta_0}(x) > 0\}$$

Then the test with rejection region C is a most powerful level α test for (5) if the size of the test is α . In the case where $f_{\theta_0}(x) > 0$ for $x \in \mathbb{R}^n$, we can define

$$\Lambda(X_1,\ldots,X_n) = \log \frac{f_{\theta_1}(X_1,\ldots,X_n)}{f_{\theta_0}(X_1,\ldots,X_n)},$$

then the most powerful test rejects H_0 : $\theta = \theta_0$ when Λ is large. Under H_0 , when n is large, it follows from CLT that

$$\frac{\sqrt{n}(\Lambda(X_1,\ldots,X_n)/n-\mu_{\Lambda})}{\sigma_{\Lambda}} \xrightarrow{\mathcal{D}} N(0,1),$$

where

$$\mu_{\Lambda} = E_{\theta = \theta_0} \left(\log \frac{g_{\theta_1}(X_1)}{g_{\theta_0}(X_1)} \right)$$

and

$$\sigma_{\Lambda} = \sqrt{Var_{\theta=\theta_0} \left(\log \frac{g_{\theta_1}(X_1)}{g_{\theta_0}(X_1)}\right)}.$$

Let z_{α} be the $(1-\alpha)$ quantile of N(0,1) and let

$$C^* = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \frac{\sqrt{n}(\Lambda(x_1, \dots, x_n)/n - \mu_{\Lambda})}{\sigma_{\Lambda}} > z_{\alpha} \right\}, \quad (7)$$

then the test with rejection region \mathcal{C}^* is an approximate most powerful level α test for (5).

• Example 5. Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, 1)$, where $\mu \in \{1, 1.2\}$. Consider the testing problem in (6).

- (a) Consider the approximate most powerful level α test with rejection region \mathcal{C}^* in (7). Write down R scripts for computing μ_{Λ} and σ_{Λ} in (7).
- (b) Write down R scripts for estimating the size of the test in Part (a) based on 10^5 simulated samples of size n with n = 200 and $\alpha = 0.05$.
- (c) Write down R scripts for estimating the power of the test in Part (a) based on 10^5 simulated samples of size n with n=200 and $\alpha=0.05$. Compare the estimated power with the power of ϕ_1 .

Sol.

(a) Let $g_{\mu}(x) = e^{-(x-\mu)^2/2}/\sqrt{2\pi}$ for $x \in (-\infty, \infty)$, then g_{μ} is a PDF of X_1 . Let

$$\mu_k = \int_{-\infty}^{\infty} g_1(x) \left(\log \frac{g_{1.2}(x)}{g_1(x)} \right)^k dx.$$

Then

 $\mu_{\Lambda} = \mu_1$

and

$$\sigma_{\Lambda} = \sqrt{\mu_2 - \mu_1^2}$$

The R scripts for computing μ_{Λ} and σ_{Λ} are given below.

```
log.g1.fun <- function(x){ dnorm(x, mean=1, sd=1, log=TRUE) }
log.g1.2.fun <- function(x){ dnorm(x, mean=1.2, sd=1, log=TRUE) }
mu.fun <- function(k){
    f <- function(x){
        a <- log.g1.fun(x)
        return( exp(a)*(log.g1.2.fun(x) -a)^k )
    }
    return(integrate(f,-Inf, Inf)$value)
}
mu1 <- mu.fun(1)
mu2 <- mu.fun(2)
mu.Lambda <- mu1
sigma.Lambda <- sqrt(mu2-mu1^2)</pre>
```

mu.Lambda and sigma.Lambda are μ_{Λ} and σ_{Λ} respectively.

(b) Below are the R scripts for estimating the size of the test in Part (a) based on 10^5 simulated samples of size n with n=200. Here it is assumed that the functions $\log.g1.fun$ and $\log.g1.2.fun$ and the variables mu.Lambda and sigma.Lambda in the solution to Part (a) have been stored in R.

```
## define a function to compute the normalized LRT test statistic
lrt_normalized.fun <- function(x){
    n <- length(x)</pre>
```

```
Lambda \leftarrow sum(log.g1.2.fun(x) - log.g1.fun(x))
 ans <- sqrt(n) *(Lambda/n - mu.Lambda)/sigma.Lambda
 return(ans)
#### generate data under HO and compute the relative frequency of rejecting HO
set.seed(1)
m <- 10<sup>5</sup>
n <- 200
ans \leftarrow rep(0, m)
for (i in 1:m){
x \leftarrow rnorm(n, mean=1, sd=1)
ans[i] <- lrt_normalized.fun(x)</pre>
length(ans[ans>qnorm(0.95)])/m
                                      #relative frequency of rejecting HO
The R output after running the above scripts is
0.05066
and this means the estimated probability of rejecting H_0 is 0.05066.
```

(c) Below are the R scripts for estimating the power of the test in Part (a) based on 10^5 simulated samples of size n with n = 200. Here it is assumed that the functions log.g1.fun and log.g1.2.fun, the variables mu.Lambda and sigma.Lambda in the solution to Part (a) have been stored in R.

```
lrt_normalized.fun <- function(x){</pre>
 n \leftarrow length(x)
 Lambda \leftarrow sum(log.g1.2.fun(x) - log.g1.fun(x))
 ans <- sqrt(n) *(Lambda/n - mu.Lambda)/sigma.Lambda
 return(ans)
set.seed(1)
m < -10^5
n <- 200
ans \leftarrow rep(0, m)
for (i in 1:m){
 x \leftarrow rnorm(n, mean=1.2, sd=1)
 ans[i] <- lrt_normalized.fun(x)</pre>
```

The estimated power for the approximate test is 0.88169. The power of ϕ_1 in Example 4) can be obtained by running the R scripts in the

solution to Example 4 to obtain beta1, which is the power of ϕ_1 . The

length(ans[ans>qnorm(0.95)])/m

power of ϕ_1 is 0.881709. The estimated power for the approximate test is close to the power of ϕ_1 .

• Note. Suppose that (X_1, \ldots, X_n) is a random sample from Bin(1, p), where $p \in (0, 1)$. Then an approximate $(1 - \alpha)$ C.I. for p is

$$\left(\bar{X} - \frac{z_{\alpha/2}\sqrt{\bar{X}(1-\bar{X})}}{\sqrt{n}}, \bar{X} + \frac{z_{\alpha/2}\sqrt{\bar{X}(1-\bar{X})}}{\sqrt{n}}\right),$$

where $\bar{X} = \sum_{i=1}^{n} X_i/n$ is the sample mean and $z_{\alpha/2}$ is the $(1 - \alpha/2)$ quantile of N(0,1). In Example 5, the estimated Type I error probability is 0.05066 and the endpoints for the observed 95% approximate C.I. are

$$0.05066 \pm \frac{z_{0.025}\sqrt{0.05066(1-0.05066)}}{\sqrt{10^5}},$$

where $z_{0.025}$ can be obtained by running the R command qnorm(0.975), so the observed 95% approximate C.I. is (0.04930077, 0.05201923). Since 0.05 is in the observed 95% approximated C.I., we do not have strong evidence to say that the Type I error probability is not 0.05. Similary, based on the estimated power in Part (c) of Example 5, the observed 95% approximated C.I. of the power of the test contains 0.881709, so we do not have strong evidence to say that the power of the test is different from 0.881709.

• Likelihood ratio test. Suppose that X is a sample with PDF (or PMF) f_{θ} , where $\theta \in \Theta$. Consider the testing problem in (1). A likelihood ratio test is based on the statistic

$$\Lambda_0(X) = \log \left(\frac{f_{\hat{\theta}_0}(X)}{f_{\hat{\theta}}(X)} \right),\,$$

where $\hat{\theta}$ is the MLE of θ and $\hat{\theta}_0$ is the MLE of θ under $H_0: \theta \in \Theta_0$. Suppose that $\Theta \subset \mathbb{R}^k$ and Θ contains an open set in \mathbb{R}^k . Suppose that

$$\Theta_0 = \{ \theta = (g_1(\tau), \dots, g_k(\tau)) : \tau \in S \}$$

where $S \subset \mathbb{R}^{k-d}$, d > 0, and S contains an open set in \mathbb{R}^{k-d} . Let J be the $k \times (k-d)$ matrix of functions such that the (i,j)-th component of J is the partial derivative of g_i with respect to its j-th component. Suppose that J is of rank (k-d) on S. Under some regularity conditions, we have

$$-2\Lambda_0(X) \stackrel{\mathcal{D}}{\to} \chi^2(d)$$

as $n \to \infty$, so we can construct an approximate level α test with rejection region

$$\mathcal{C}_0 = \{ x \in \mathbb{R}^n : -2\Lambda_0(x) > k_{\alpha,d} \}$$

where $k_{\alpha,d}$ is the $(1-\alpha)$ quantile of $\chi^2(d)$.

• Example 6. Suppose that $X = (X_1, ..., X_n)$ is a random sample from $N(\mu, \sigma^2)$, where $\mu \in (-\infty, \infty)$ and $\sigma > 0$. Consider the testing problem

$$H_0: \mu = 0 \text{ v.s. } H_1: \mu \neq 0.$$
 (8)

Find an approximate level α test based on the likelihood ratio test statistic $\Lambda_0(X)$ (assuming the regularity conditions hold).

A sketch of solution. Note that

$$\Theta = \{(\mu, \sigma) : \mu \in (-\infty, \infty), \sigma > 0\}$$

is a subset of R^2 and contains an open set in R^2 .

$$\Theta_0 = \{(0, \sigma) : \sigma > 0\} = \{(g_1(\sigma), g_2(\sigma)) : \sigma \in (0, \infty)\},\$$

where $g_1(\sigma) = 0$ and $g_2(\sigma) = \sigma$). $(0, \infty)$ is a subset of $R = (-\infty, \infty)$ and contains an open set in R. Let

$$J = \begin{pmatrix} g_1'(\sigma) \\ g_2'(\sigma) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

then the matrix J is of rank 1.

Under H_0 , the MLE of $(\mu, \sigma) = (0, \hat{\sigma}_0)$, where

$$\hat{\sigma}_0 = \sqrt{\frac{\sum_{i=1}^n X_i^2}{n}}.$$

Without assuming $\mu = 0$, the MLE of (μ, σ) is $(\bar{X}, \hat{\sigma})$, where \bar{X} is the sample mean and

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}}.$$

The likelihood ratio test statistic

$$\Lambda_0(X) = \log \frac{\left(\frac{1}{\sqrt{2\pi\hat{\sigma}_0^2}}\right)^n e^{-\sum_{i=1}^n (X_i - 0)^2/(2\hat{\sigma}_0^2)}}{\left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n e^{-\sum_{i=1}^n (X_i - \bar{X})^2/(2\hat{\sigma}^2)}} = \frac{n}{2} \log \left(\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n X_i^2}\right).$$

$$\Theta_0 = \{ (g_1(\sigma), g_2(\sigma)) : \sigma > 0 \}$$

An approximate level α test based on $\Lambda_0(X)$ rejects H_0 if

$$-2\Lambda_0(X) > k_{\alpha,1},$$

where $k_{\alpha,1}$ is the $(1-\alpha)$ quantile of $\chi^2(1)$.

• R scripts for an experiment of checking the distribution of $-2\Lambda_0(X)$ under $H_0: \mu = 0$ in Example 6.

```
lrt.stat <- function(x){</pre>
 n <- length(x)
 x1 <- x - mean(x)
 lambda <- (n/2)*log(sum(x1^2)/sum(x^2))
 ans <- -2*lambda
 return(ans)
}
density.chi <- function(x){ dchisq(x, 1) }</pre>
set.seed(1)
m < -10^5
n <- 200
ans \leftarrow rep(0, m)
for (i in 1:m){
 x <- rnorm(n, 0, 1)
 #note: the distriubtion of lambda does not depend on sigma when mu=0
 ans[i] <- lrt.stat(x)</pre>
hist(ans, nclass="scott", freq=FALSE)
curve(density.chi, 0, max(ans), add=TRUE, col=2)
\#\#\#Compute estimated Type I error probability when mu=0, sigma=1
length(ans[ans>qchisq(0.95, 1)])/m
```

The estimated Type I error probability is 0.05133 and the observed C.I. of the Type I error probability is (0.0499623, 0.0526977).