
Goodness of fit tests

• Suppose that (X1, . . . , Xn) is a random sample with distribution D. A
goodness of fit testing problem is

H0 : D = D0 v.s. H1 : D 6= D0,

where D0 is a given distribution.

• Chi-squared goodness of fit test (卡方適合度檢定). Suppose that (Y1, . . . , Yn)
is a random sample such that Y1 takes values in {1, . . . , k}. Let pj =
P (Y1 = j) for j ∈ {1, . . . , k}. Consider the testing problem

H0 : (p1, . . . , pk) = (p0,1, . . . , p0,k) v.s. H1 : (p1, . . . , pk) 6= (p0,1, . . . , p0,k),
(1)

where p0,1, . . . , p0,k are given postive numbers such that
∑k
j=1 p0,j = 1.

Let

Nj =

n∑
i=1

I{j}(Yi)

for j = 1, . . ., k. The chi-squared goodness of fit test rejects H0 at level α
if and only if

k∑
j=1

(Nj − np0,j)2

np0,j
> cα,k−1,

where cα,k−1 is the (1− α) quantile of χ2(k − 1).

• The chi-squared goodness of fit test is an approximate size α test since

k∑
j=1

(Nj − npj)2

npj

D→ χ2(k − 1) as n→∞. (2)

The proof of (2) is based on the following facts and the result in Problem
37. The proof is left as an exercise.

Fact 1 Suppose that Z is a k × 1 random vector such that Z ∼ N(0,Σ)
and Σ2 = Σ. Then ZTZ ∼ χ2(m), where m is the trace of Σ.

The proof of Fact 1 is given at the end of this handout.

Fact 2 Suppose that Xn
D→ X as n→∞, A is a region such that P (X ∈

A) = 1 and g is continuous on A. Then g(Xn)
D→ g(X) as n→∞.

The proof of Fact 2 is beyond the scope of this course. The special case
where X is a constant c can be proved using Fact 2 in the handout “Central
Limit Theorem and approximate confidence intervals”.
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• The quantile of a χ2 distribution can be obtained using the R com-
mand qchisq. For example, the R output after running the command
qchisq(0.95, 1:4) is

3.841459 5.991465 7.814728 9.487729

so the 95% quantiles of χ2(m) for m = 1, 2, 3, 4 are 3.841459, 5.991465,
7.814728, and 9.487729 respectively.

• Example 1. Suppose that (X1, . . . , Xn) is a random sample from some
distirbution D, where n = 500 and X1 takes values in {0, 1, 2}. Suppose
that we observe 200 0’s, 220 1’s and 80 2’s in the sample. Can we conclude
that D is not Bin(2, 0.4) at level 0.05 based on the chi-squared goodness
of fit test? The R output after running the command qchisq(0.95, 1:4)

is

3.841459 5.991465 7.814728 9.487729

Sol. Let qj = P (Bin(2, 0.4) = j) = C2
j 0.4j0.62−j for j = 0, 1, 2, then

(q0, p1, q2) = (0.36, 0.48, 0.16).

Let (N0, N1, N2) = (200, 220, 80), then the observed test statistic is

2∑
j=0

(Nj − 500qj)
2

500qj
= 3.888889.

The 0.95 quantile of χ2(2) is 5.991465, so the observed test statistic does
not exceed the 0.95 quantile of χ2(2) and we cannot conclude that the
distribution D is not Bin(2, 0.4) at level 0.05.

• The chi-squared goodness of fit test can be applied to grouped data to
test whether the original data are from a certain distribution.

Example 2. Suppose that we have summaried annual salary information
of 500 employees in a city as follows.

salary range (in 104 NTDs) counts
(0, 30] 51

(30, 60] 216
(60, 90] 120

(90, 120] 52
(120,∞) 61

Suppose that the 500 annual salaries are IID random variables from some
distribution D. Can we conclude that D is not N(65, 362) at level 0.05
based on the chi-squared goodness of fit test? Note that if we run the
following commands
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a <- c(0, 30, 60, 90, 120)

b <- pnorm(a, mean=65, sd=36)

p <- diff(b)

c(p, 1-sum(p))

in R, then the output is

0.12997611 0.27929897 0.31152926 0.18041790 0.09877776

Also, the R output after running the command qchisq(0.95, 2:5) is

5.991465 7.814728 9.487729 11.070498

Sol. Let

(q1, . . . , q5) = (0.12997611, 0.27929897, 0.31152926, 0.18041790, 0.09877776)

and
(N1, . . . , N5) = (51, 216, 120, 52, 61),

then the observed test statistic is

5∑
j=1

(Nj − 500qj)
2

500qj
= 71.87922.

The 0.95 quantile of χ2(4) is 9.487729, so the observed test statistic exceeds
the 0.95 quantile of χ2(4) and we can conclude that the distribution D is
not N(65, 362) at level 0.05. Note that we can compute the observed test
statistics by running the following R caomands

q <- c(0.12997611, 0.27929897, 0.31152926, 0.18041790, 0.09877776)

N <- c(51, 216, 120, 52, 61)

sum( (N-500*q)^2/(500*q) )

• Suppose that (X1, . . . , Xn) is a random sample with CDF F . The Kolmogorov-
Smirnov test can be applied to test

H0 : F = F0 v.s. H1 : F 6= F0, (3)

where F0 is a given CDF.

• The Kolmogorov-Smirnov test is based on the statistic

sup
x
|F̂ (x)− F0(x)|,

where F̂ is the empirical cumulative distribution function (empirical CDF)
based on the sample (X1, . . . , Xn), which is defined by

F̂ (x) =
1

n

n∑
i=1

I(−∞,x](Xi) for x ∈ (−∞,∞).
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• The R command for computing the empirical CDF based on a sample x

is ecdf(x). For instance, suppose that we generate x: a random sample
of size 100 from N(0, 1) by running the following commands in R:

set.seed(1)

x <- rnorm(100)

Then we can compute and plot the empirical CDF based on the sample
x and add the curve of the N(0, 1) CDF in the plot for comparison by
running the following R commands:

x.ecdf <- ecdf(x)

m <- min(x)

M <- max(x)

curve(x.ecdf, m-1, M+1)

curve(pnorm, m-1, M+1 , add=TRUE, col=2)

• Suppose that (X1, . . . , Xn) is a random sample with CDF F and let F̂ be
the empircal CDF based on the sample (X1, . . . , Xn). When F is strictly
increasing and continuous, it can be shown that the distribution of the
Kolmogorov-Smirnov test statistic

sup
x
|F̂ (x)− F (x)|

does not depend on F . LetD0 denote this disitribution, then the Kolmogorov-
Smirnov test rejects the H0 in (3) at level α if and only if

sup
x
|F̂ (x)− F0(x)| > cα, (4)

where cα is the (1− α) quantile of D0. Here (4) is equivalent to

α > P (D0 > observed sup
x
|F̂ (x)− F0(x)|)︸ ︷︷ ︸

p-value

.

Note.

– The Kolmogorov-Smirnov test statistic can be computed based on
the equality

sup
x
|F̂ (x)− F0(x)| = max

i∈{1,...,n}
| F̂ (X(i))︸ ︷︷ ︸

=i/n

−F0(X(i))|.

– The p-value P (D0 > observed supx |F̂ (x)−F0(x)|) can be obtained
using simulated data from D0.

• The R command for conducting the the Kolmogorov-Smirnov test is
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ks.test(x, F0)

where x is the sample and F0 is the F0 in (3).

– ks.test(x,F0)$statistic gives the observed test statistic supx |F̂ (x)−
F0(x)|.

– ks.test(x,F0)$p.value gives the p-value of the Kolmogorov-Smirnov
test.

• The R command for reading data into R is read.table if the data set is
in a table form stored in a text file. Suppose that the data file is called
data.txt, the file is in the working directory of R, and the table columns
are separated by spaces. Run the R command

x <- read.table(file="data.txt")

and the data set is read into R. The working directory of R can be found
by running the command

getwd()

in R.

• Example 3. Suppose that (X1, . . . , Xn) is a random sample from some
distribution D, and the observed sample is stored in the data file

https://stat.walkup.tw/teaching/math_stat_under/data/example_data.txt

Determine whether it is reasonable to assume that D is a normal distri-
bution.

Sol. Let Φµ,σ be the CDF of N(µ, σ2) for µ ∈ (−∞,∞) and σ > 0. We
would like to apply Kolmogorov-Smirnov test to check whether there is a
strong evidence against the hypothesis that D = N(µ0, σ0), where

(µ0, σ0) = arg min
(µ,σ)

(
sup
x
|F̂ (x)− Φµ,σ(x)|

)
.

To find (µ0, σ0), we will define a function g in R such that

g(µ, σ) = sup
x
|F̂ (x)− Φµ,σ(x)|

and then use the R function optim to find (µ0, σ0): the minimizer of g.
The R scripts for the above procedure are given below.
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data <- read.table(file="example_data.txt") # read the data into R

data <- as.numeric(data[,1]) #take the first column of data

#and change its mode to a numeric vector,

#and then replace data by this vector.

#define the function g

g <- function(mu, sigma){

F <- function(x){ pnorm(x, mean=mu, sd= sigma) }

return(ks.test(data, F)$statistic)

}

#reparametrization for unconstrained optimization

#define a function g1

# g1( c(mu,eta)) = g(mu, sigma)

# eta = log(sigma); sigma = exp(eta)

g1 <- function(mu.eta){

mu <- mu.eta[1]

sigma <- exp(mu.eta[2])

return(g(mu, sigma))

}

#compute initial value of parameters for optimization

mu1 <- mean(data)

sigma1 <- sd(data)

eta1 <- log(sigma1)

#perform optimization for g1

opt <- optim(c(mu1, eta1), g1)

#compute (mu0, sigma0): the minimizer of g

mu0 <- opt$par[1]

eta0 <- opt$par[2]

sigma0 <- exp(eta0)

# perform the Kolmogorov-Smirnov test

F0 <- function(x){ pnorm(x, mean=mu0, sd=sigma0) }

ks.test(data, F0)

The R output after running the above scripts is

One-sample Kolmogorov-Smirnov test

data: data

D = 0.0017443, p-value = 0.9212
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alternative hypothesis: two-sided

and it shows the p-value for the Kolmogorov-Smirnov test is 0.9212, so
we do not have evidence against the hypothesis that D = N(µ0, σ0). It is
reasonable to assume that D is a normal distribution.

• For the testing problem in (3), the Kolmogorov-Smirnov test statistic can
be used to measure the distancs between F and F0. If we have to choose
one of two parametric families as the family for the data distribution, we
can use the Kolmogorov-Smirnov test statistic.

• Example 4. Suppose that the data in Example 3 are IID from N(µ, σ) for
some (µ, σ) or U(a, b) (the uniform distribution on (a, b)) for some (a, b).
Determine the data are from the normal family or the uniform family
based on

Dj = min
F∈Fj

sup
x
|F̂ (x)− F (x)|

for j ∈ {1, 2}, where F̂ is the empirical CDF, F1 is the collection of CDFs
of the distirbutions in the normal family, and F2 is the collection of CDFs
of the distirbutions in the uniform family.

Sol. From the solution to Example 3, we have D1 = 0.0017443. To
compute D2, we will modify the R scripts in Example 3 as follows:

data <- read.table(file="example_data.txt") # read the data into R

data <- as.numeric(data[,1])

#define a function g so that g(a,b) is

#the Kolmogorov-Smirnov test staistic with F = the U(a,b) CDF

g <- function(a,b){

F <- function(x){ punif(x, min=a, max=b) }

return(ks.test(data, F)$statistic)

}

#define a function g1

# g1(c(a,eta)) = g(a,b)

# b = a + exp(eta)

g1 <- function(a.eta){

a <- a.eta[1]

b <- a+exp(a.eta[2])

return(g(a,b))

}

#compute initial value of (a, eta) for optimization

a1 <- min(data)

b1 <- max(data)
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eta1 <- log(b1-a1)

#perform optimization for g1

opt <- optim(c(a1, eta1), g1)

#find (a0,b0): the minimizer of g

a0 <- opt$par[1]

b0 <- a0+exp(opt$par[2])

# perform the Kolmogorov-Smirnov test

F0 <- function(x){ punif(x, min=a0, max=b0) }

ks.test(data, F0)

The R output after running the above scripts is

One-sample Kolmogorov-Smirnov test

data: data

D = 0.048435, p-value < 2.2e-16

alternative hypothesis: two-sided

and it shows that the Kolmogorov-Smirnov test statistic is 0.04835, so
D2 = 0.04835. Since D1 = 0.0017443 < 0.04835 = D2, we choose the
normal family as the family of data distribution.

• In Examples 3 and 4, we have computed the “distance” between the em-
pirical CDF to the collection of CDFs of a family, and chosen a family as
the family of distributions for the data based on the distance. This ap-
proach can be extended to the case where we have more than two families
to choose from.
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• Proof of Fact 1.

(i) We will first show that the eigenvalues of Σ are in {0, 1}. Note that Σ
is a k×k symmetric matrix, so it has k real eigenvalues. Moreover, the
condition that Σ2 = Σ implies that each eigenvalue of Σ is either 0 or
1. To see this, let λ be an eigenvalue of Σ and v is the corresponding
eigenvector. Then by the definition of eigenvalue/eigenvector,

Σ2v = ΣΣv = Σλv = λΣv = λ2v. (5)

In addition, by the assumption that Σ2 = Σ, we have

Σ2v = Σv = λv. (6)

From (5) and (6), we have λv = λ2v. Since v is not a vector of zeros,
we must have λ = λ2, which implies that λ = 0 or 1.

(ii) Next, we will show that ZTZ is equal to sum of squares of IID N(0, 1)
random variables, so the distribution of ZTZ is a χ2 distribution. To
see this, note that the matrix Σ can be decomposed as Σ = PDPT ,
where PPT is the k × k identity matrix, and D is a k × k diagonal
matrix whose diagonal elements are the eigenvalues of Σ. Let U =
PTZ, then U ∼ N(0, PTΣP ) = N(0, D). Since D is a diagonal
matrix whose diagonal elements are in {0, 1}, some components of U
are zeros and the other components are IID N(0, 1) random variables.
Let r be the number of nonzero components in U , then

r = trace of D and UTU ∼ χ2(r).

Therefore,
ZTZ = (PU)TPU = UTU ∼ χ2(r),

where r is the trace of D. Since

trace of Σ = trace of PDPT = trace of DPTP = trace of D,

r is equal to the trace of Σ. The proof of Fact 1 is complete.
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