
Evaluation of estimation accuracy

• Suppose that (X1, . . . , Xn) is a sample and the distribution of (X1, . . . , Xn)
depends on a parameter vector θ, where θ is in some space Θ. Suppose
that Tn is an estimator of g(θ), where g is a real-valued function, then it
is common to use the mean squared error (or mean square error; MSE)

E(Tn − g(θ))2

to evaluate the estimation accuracy of Tn.

• Example 1. Suppose that (X1, . . . , Xn) is a random sample and Xi has
a PDF fθ, where θ > 0 and for x ∈ (−∞,∞),

fθ(x) = I[0,θ](x) =

{
1
θ if 0 ≤ x ≤ θ;
0 otherwise.

Here for a set A ⊂ Rd, the function IA is defined on Rd so that

IA(x) =

{
1 if x ∈ A;
0 otherwise.

(a) Let X(n) = max(X1, . . . , Xn). Show that X(n) is the MLE of θ.

(b) For x ∈ (−∞,∞), define

Fn(x) =

 0 if x ≤ 0;
(x/θ)

n
if 0 < x < θ;

1 if x ≥ θ.

Show that Fn is the CDF of X(n).

(c) For x ∈ (−∞,∞), define

fn(x) =
n

θ

(x
θ

)n−1
I[0,θ](x) =

{
n
θ

(
x
θ

)n−1
if 0 ≤ x ≤ θ;

0 otherwise.

Show that fn is a PDF of X(n).

(d) Show that the MSE of X(n) is
2θ2

(n+ 1)(n+ 2)
.

(e) Show that 2X̄ is a method of moment estimator of θ, where X̄ =∑n
i=1Xi/n and the MSE of 2X̄ is

θ2

3n
.

A sketch of solution.

(a) The likelihood function L is

L(η) =

{ (
1
η

)n
if X(n) ≤ η;

0 otherwise.
=

(
1

η

)n
I[X(n),∞)(η).

Note that L(η) is maximized when η ∈ [X(n),∞) and η is minimized.
Since the smallest η in [X(n),∞) is X(n), the MLE of θ is X(n).
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(b) Let F be the CDF of X1, then

F (x) =

∫ x

−∞
fθ(t)dt =


0 if x ≤ 0;∫ x
0

1
θdt = (x/θ) if 0 < x < θ;∫ θ

0
1
θdt = 1 if x ≥ θ.

and for x ∈ (−∞,∞),

P (X(n) ≤ x) = P (∩ni=1{Xi ≤ x}) = (F (x))n.

It is clear that (F (x))n = Fn(x) for x ∈ (−∞,∞) for the Fn given
in Part (b), so Fn is the CDF of X(n).

(c) Direct calculation gives

∫ x

−∞
fn(t)dt =


0 if x ≤ 0;∫ x
0
n
θ

(
t
θ

)n−1
dt = (x/θ)

n
if 0 < x < θ;∫ θ

0
n
θ

(
t
θ

)n−1
dt = 1 if x ≥ θ,

which means
∫ x
−∞ fn(t)dt = Fn(x) for x ∈ (−∞,∞). Since Fn is the

CDF of X(n), fn is a PDF of X(n).

(d) The MSE of X(n) is

E(X(n) − θ)2 =

∫ ∞
−∞

(t− θ)2fn(t)dt

=

∫ θ

0

(t− θ)2n
θ

(
t

θ

)n−1
dt

=
2θ2

(n+ 1)(n+ 2)
.

(e) E(X1) =
∫ θ
0
xfθ(x)dx = θ

2 . Solving X̄ = θ
2 gives θ = 2X̄, so a

method of moment eatimator of θ is 2X̄. The MSE of 2X̄ is

E(2X̄ − θ)2 = V ar(2X̄) + (E(2X̄ − θ))2

=
4V ar(X1)

n
=

4θ2

12n
=
θ2

3n
.

• In Example 1, we can also approximate each MSE at given a θ value
by generating random samples to compute the squared errors and then
computing the average of the squared errors as an approximate MSE. The
R commands are given below.

set.seed(1)

theta <- 1

n <- 1000

m <- 10^6
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se <- rep(0, m)

for (i in 1:m){

x <- runif(n, 0, theta)

se[i] <- (max(x) - theta)^2

}

mean(se)

#approximate MSE of MLE: 1.985207e-06

2*theta^2/((n+1)*(n+2))

#MSE of MLE: 1.994014e-06

set.seed(1)

theta <- 1

n <- 1000

m <- 10^6

se <- rep(0, m)

for (i in 1:m){

x <- runif(n, 0, theta)

se[i] <- (2*mean(x) - theta)^2

}

mean(se)

#approximate MSE of MME: 0.0003333407

theta^2/(3*n)

#MSE of MME: 0.0003333333

• In Example 1, the MSE of MLE is smaller than the MSE of MME for
all θ > 0 when n ≥ 3. In general, it is impossible to find an estimator
with smallest MSE for all θ ∈ Θ, but it is possible to find an estimator
with smallest MSE among unbiased estimators based on Lehmann-Scheffé
Theorem or Cramér-Rao lower bound (Rao-Cramér lower bound).

• Bias of an estimator. Suppose that Tn is an estimator of g(θ) based on a
sample of size n. E(Tn)− g(θ) is called the bias of Tn. If the bias is 0 for
all θ ∈ Θ, then Tn is called an unbiased estimator of g(θ).

• Example 2. Suppose that (X1, . . . , Xn) is a random sample and X1 ∼
N(µ, σ2). Let X̄ =

∑n
i=1Xi/n and

S =

√∑n
i=1(Xi − X̄)2

n− 1
.

Find the bias of
∑n
i=1(Xi − X̄)2/n and S2 (as estimators of σ2).

Sol. Since

(n− 1)S2 =

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

(Xi − µ)2 − n(X̄ − µ)2,
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and

X̄ ∼ N
(
µ,
σ2

n

)
,

we have

E((n− 1)S2) = E

n∑
i=1

(Xi − µ)2 − En(X̄ − µ)2

= nV ar(X1)− nV ar(X̄)

= nσ2 − n
(
σ2

n

)
= (n− 1)σ2.

so E(S2) = σ2 and the bias of S2 is E(S2)−σ2 = 0. The bias of
∑n
i=1(Xi−

X̄)2/n is

E(n−1(Xi − X̄)2)− σ2 = E((n− 1)S2/n)− σ2

=
(n− 1)σ2

n
− σ2

= −σ
2

n
.

• In Example 2, the assumption X1 ∼ N(µ, σ2) can be replaced by that
E(X1) = µ and V ar(X1) = σ2.

• Suppose that (X1, . . . , Xn) is a sample and the distribution of (X1, . . . , Xn)
is determined by a parameter vector θ, where θ is in some space Θ. Con-
sider the estimation of g(θ), where g is a known real-valued function.
Suppose that Tn is an unbiased estimator of g(θ) and for every Wn that
is an unbiased estimator of g(θ), we have

V ar(Tn) ≤ V ar(Wn)

for all θ ∈ Θ. Then Tn is called a (uniformly) minimum variance unbiased
estimator (UMVUE or MVUE) of g(θ).

• Lehmann-Scheffé Theorem. Suppose that (X1, . . . , Xn) is a sample whose
distribution is determined by a parameter vector θ, where the parameter
vector θ is in some space Θ. Suppose that Tn is a statistic that is sufficient
and complete, and Un is an unbiased estimator of g(θ). Then E(Un|Tn)
is the unique MVUE of g(θ) if V ar(E(Un|Tn)) is finite.
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