Evaluation of estimation accuracy

e Suppose that (X7, ..., X,,) is asample and the distribution of (X71,..., X},)
depends on a parameter vector 6, where 6 is in some space ©. Suppose
that T, is an estimator of g(#), where g is a real-valued function, then it
is common to use the mean squared error (or mean square error; MSE)

E(T, — g(9))?
to evaluate the estimation accuracy of Tj,.

e Example 1. Suppose that (X7,...,X,) is a random sample and X; has
a PDF fp, where 6 > 0 and for x € (—o0, 00),

1 .
_ _J 7 f0<x<0;
fo(@) = Tpg(x) = { 0 otherwise.
Here for a set A C R%, the function I is defined on R? so that

1 ifxe A,
La(x) = { 0 otherwise.

(a) Let X(,) = max(Xi,...,X,). Show that X, is the MLE of 6.
(b) For z € (—o0,00), define

0 if z <0;
Fy(z)={ (/)" if0<z<¥;
1 if x > 6.

Show that F, is the CDF of X ;).
(¢) For z € (—o0,00), define

n fz\n-1 n(2)"h 0 <a <6
= — | — — ] 7] — =Y
fnl) (9) To.0)(@) { 0 otherwise.

Show that f, is a PDF of X(,).
202
(n+1)(n+2)

(e) Show that 2X is a method of moment estimator of 6, where X =
2

-. 0
>oi, Xi/n and the MSE of 2X is e

(d) Show that the MSE of X, is

A sketch of solution.
(a) The likelihood function L is
)" if Xy <m; 1\"
L(n) = <") A =T — (2 Ik e ().
{ 0 otherwise. U] [Xny,00)

Note that L(n) is maximized when n € [X(,), 00) and 7 is minimized.
Since the smallest 7 in [X(,),00) is X (), the MLE of 6 is X (..



(b) Let F be the CDF of X, then

F(z) = / fo(tydt = [y 5dt = (z/0) if 0 <z <6;
oo Jo Yat =1 if > 6.

and for z € (—o00, ),
P(X(n) < @) = P(NiZ {Xi <)) = (F(2))"

It is clear that (F'(z))™ = F,(x) for € (—o00,00) for the F,, given
in Part (b), so F, is the CDF of X(,.

(¢) Direct calculation gives

" 0 if x <0;
/ Falhydt =4 [Fm (2)" Ve = (2/0)" 0 < <6;
- v har =1 itz >0,

which means [“_ f,(t)dt = F,(z) for € (—00,00). Since F, is the
CDF of X(n)7 fn is a PDF of X(n)

(d) The MSE of X, is

E(Xm) —0)?

/OO (t—0)2f.(t)dt

— 00

/Oe(t - 9)2% (;)n_l dt

20?2
(n+1(n+2)

(e) BE(X1) = foexfg(x)dx = 4. Solving X = & gives § = 2X, so a

method of moment eatimator of 8 is 2X. The MSE of 2X is

E(2X —0)? Var(2X) + (E(2X —0))?

AVar(Xy) 46> 6%

n 12n  3n’

e In Example 1, we can also approximate each MSE at given a 6 value
by generating random samples to compute the squared errors and then
computing the average of the squared errors as an approximate MSE. The
R commands are given below.

set.seed(1)

theta <- 1
n <- 1000
m <- 1076



se <- rep(0, m)
for (i in 1:m){
x <- runif(n, 0, theta)
se[i] <- (max(x) - theta)~2
}
mean (se)
#approximate MSE of MLE: 1.985207e-06
2%theta~2/((n+1)*(n+2))
#MSE of MLE: 1.994014e-06

set.seed(1)

theta <- 1
n <- 1000
m <- 1076

se <- rep(0, m)
for (i in 1:m){
x <- runif(n, O, theta)
sel[i] <- (2*mean(x) - theta) 2
}
mean (se)
#approximate MSE of MME: 0.0003333407
theta~2/(3*n)
#MSE of MME: 0.0003333333

In Example 1, the MSE of MLE is smaller than the MSE of MME for
all & > 0 when n > 3. In general, it is impossible to find an estimator
with smallest MSE for all § € ©, but it is possible to find an estimator
with smallest MSE among unbiased estimators based on Lehmann-Scheffé
Theorem or Cramér-Rao lower bound (Rao-Cramér lower bound).

Bias of an estimator. Suppose that T,, is an estimator of g(#) based on a
sample of size n. E(T,,) — g(f) is called the bias of T;,. If the bias is 0 for
all € O, then T, is called an unbiased estimator of g(f).

Example 2. Suppose that (Xi,...,X,) is a random sample and X; ~
N(p,0%). Let X =>"" | X;/n and

Find the bias of Y1 | (X; — X)?/n and S? (as estimators of 02).
Sol. Since

n n

(n—1)8*=> (X, = X)* => (Xi — p)* = n(X — p)?,

=1 =1



and

we have

B((n-1)8) = BY (X~ p) - Bn(X )’
= TLV;L’I’(Xl) —nVar(X)

2

= no’—n (‘;) = (n—1)02.

s0 E(S5?) = ¢° and the bias of §? is E(S?)—0? = 0. The bias of Y1, (X;—
X)?/n is

E(n Y(X; - X)?) —o?

E((n—1)S8%/n) — o
(n —1)o? _ o2

0.2

n

In Example 2, the assumption X; ~ N(u,0?) can be replaced by that
E(X1) = p and Var(X;) = o2

Suppose that (X7, ..., X, ) is a sample and the distribution of (X71,..., X},)
is determined by a parameter vector 6, where 6 is in some space ©. Con-
sider the estimation of g(f), where g is a known real-valued function.
Suppose that T, is an unbiased estimator of g(6) and for every W,, that
is an unbiased estimator of ¢g(6), we have

Var(T,) < Var(W,)

for all € ©. Then T, is called a (uniformly) minimum variance unbiased
estimator (UMVUE or MVUE) of ¢(6).

Lehmann-Scheffé Theorem. Suppose that (X1,...,X,,) is a sample whose
distribution is determined by a parameter vector #, where the parameter
vector 6 is in some space ©. Suppose that T;, is a statistic that is sufficient
and complete, and U, is an unbiased estimator of g(#). Then E(U,|T,)
is the unique MVUE of ¢(0) if Var(E(U,|T},)) is finite.



