Estimation and types of convergence

e When we have IID data X5, ..., X,, (X1, ..., X,,) is called a random
sample and n is called the sample size of the random sample. In such
case, if the distribution of X; is D, then we say that (X1, ..., X,,) is a
random sample from the distribution D.

e Suppose that (X7, ..., X,,) is a random sample from an unknown distribu-
tion D, then we can estimate D based on the random sample. A common
approach is to assume that D is determined by a vector § € R* for some k.
Then the problem of estimating D becomes the problem of estimating 6.
In such case, the estimation problem is known as a parametric estimation
problem and 6 is called a parameter vector.

— Example of a parametric estimation problem. Suppose that (X1, ...,
X,,) is a random sample from N (p,0?), where u € R and o > 0 are
unknown. Let 6 = (u,0). Then we only need to estimate 6 based on
the sample to learn about the distribution of X7j.

e Identifiability. Suppose that C is a collection of distributions given by
C = {Qp : 0 € O}, where O is a specified subset in RF. Then C is also
called a family of distributions. The family C is identifiable means that
for 31, 0, € @,

Qo, = Qp, = 01 = 0s.

e Example 1. Let C = {N(p,0?): (u,0) € R*}. Then the family C is not
identifiable. To see this, let (pu1,01) = (0,1) and (p2,02) = (0,—1), then
(p1,01), (pa,02) are two points in R? such that

N(/’Lho—f) = N(07 1) = N(M27J§)

yet
(1, 01) # (p2,02).
Therefore, the family C is not identifiable.

e Estimator. Suppose that (X1, ..., X},) is a random sample from a distribu-
tion determined by a parameter vector 8. To estimate g(#): some quantity
determined by 6, we usually use some quantity that can approximate g(0)
well and be computed based on the sample. Such a quantity is called an
estimator of g(#) (g(0)#9 43t &). A quantity that can be computed based
on the sample is called a statistic (431 ).

e To establish good approximation property of an estimator, we often need
to apply some results about the convergence of a sequence of random
variables (or random vectors), including

— LLN (law of large numbers)
— CLT (central limit theorem)



— continuous mapping theorem
— Slutsky’s theorem
— Delta method
e We will learn about three types of convergence of sequences of random
vectors.
— Almost surely convergence
— Convergence in probability
— Convergence in distribution
e Almost surely convergence. Suppose that {Y;,}22 ; is a sequence of random

vectors in R* on the probability space (£, F, P) and Y is also a random
vector in R* on (Q, F, P). If

P ({w €Q: lim ¥, (w) = Y(w)}) —1, (1)

then we say that Y, converges to Y almost surely as n — oco. Here the
distance between Y,,(w) and Y (w) is || Y, (w) — Y (w)]|, where || - || denotes
the Euclidean norm.

e Convergence in probability. Suppose that {Y,,}52; is a sequence of random
vectors in R* on the probability space (€2, F, P) and Y is also a random
vector in R* on (Q, F, P). If

lim P({w e Q: ||V, (w) —Y(w)|| >¢e}) =0 for every e >0, (2)
n—oo
then we say that Y,, converges to Y in probability as n — oco. The con-
vergence is often denoted by Y, ZYasn— oo
e Note. It can be shown that implies that .

e Strong law of large numbers (SLLN, 3% K # % 81). Suppose that X1, ...,
X, are IID random variables and E(X;) is finite. Let X = Yo Xi/n,
then X converges to E(X) almost surely as n — oco.

e A version of weak law of large numbers (WLLN, 35 X # % B) is given in
Theorem 5.1.1 in the text.

Fact 1 (Theorem 5.1.1 in the text) Suppose that X, oy Xy are IID
random variables and E(X1) and Var(X;) are finite. Let X = Y7 | X;/n,

then X 5 E(X,) as n — oo.

Note.

— The proof of Fact [T]can be based on Chebyshev’s inequality or Markov’s
inequality.



— Since almost surely convergence implies convergence in probability,
the assumption that Var(X7) is finite is not needed in Fact

e Suppose that we use a statistic T, to estimate some quantity g(f), where
n is the sample size and the distribution of the sample is determined by

0. 17T, 5 g(0) as n — oo, then T, is called a consistent estimator of g(9)
(T, Bg(0)8 — B AE+ ).

e Example 2.  Suppose that (X1, ..., X,) is a random sample and p =
E(X,) is finite. Which of the following statements are true?

(a) i, X;/n is a consistent estimator of p.

(b) 143", X;/n is a consistent estimator of 1 + .

(¢) p+> ", X;/nis a consistent estimator of 2.
Ans. (a)(b)

e Example 3. Suppose that we have IID data X1, ..., X,,, then for t € R,
a consistent estimator of P(X; <) is

1 n
- Zlf(—oo,t] (Xi).

e In Example[3] for ¢ € R, let

Then F is call the empirical CDF based on (X1,...,Xn).

e Suppose that (Xi,...,X,) is a random sample from a distribution with
CDF F'. Then one can test whether

H[)IF:FO

based on the sample using the Kolmogorov-Smirnov test, which rejects Hy
when .

sup |F'(x) — Fo(z)|

TER
is large, where F' is the empirical CDF based on (Xq,...,Xn).

— To test whether the CDF F' =F0 based on the sample x = (X7,...,X,)
using the Kolmogorov-Smirnov test, the R command is

ks.test(x, FO)



The following result is used to establish convergence in probability under
a continuous transformation, which is a version of continuous mapping
theorem (for convergence in probability).

Theorem. Suppose that {X,,}5°; is a sequence of random vectors in R*
and X, 2 X asn — oo. Suppose that ¢ is a continuous function on R*.
Then ¢(X,,) A g(X) as n — oo.

The following is another version of continuous mapping theorem.

Theorem. Suppose that ¢ is a vector of constants and X, B casn — oo.
Suppose that ¢ is a function that takes values in R* and is continuous at
¢. Then g(X,) 5 g(c) as n — oo.  The proof of the above version of
continuous mapping theorem is based on the definition of convergence in
probability.

Example 4. Suppose that (Xi,...,X,) is a random sample, both F(X7)
and Var(X;) are finite, and Var(X;) > 0. Let p = E(X;) and o2 =
Var(X1). Let X, = > X;/n and Y,, = 31" | X2/n, then from the
WLLN, X,, and Y,, are consistent estimators of ;1 and o2+ p? respectively.
Find a consistent estimator of o.

Ans. (Y, — X2)V/2.

Convergence in distribution. Suppose that {X,,}52; is a sequence of ran-
dom vectors in R* and X is a random vector in R* with CDF Fx. If

lim P(X, <t)=Fx(t)

n—,oo
for every t that is a continuity point of F'x, then we say that X, converges
in distribution to X as n — oo, denoted by

X, B Xor X, 2 Dy,

where Dx is the distribution of X. We will say that Dx is the limiting
distribution of X,,.

Note. X, R x implies that X, B X but not vice versa. However, we
have the following result:

Fact 2 Suppose that X, B casn — oo and ¢ is a vector of constants,
theangcasn—M)o.

Note. The special case where c is a constant is given in Theorem 5.2.2 in
the text.

Convergence in distribution for the univariate case can be established using
convergence of MGF's according to Theorem 3 in [I]. Below is a modified
version.



Fact 3 Suppose that {X,}5°; is a sequence of random variables and X
is a random variable. Let Mx, and Mx denote the MGF's of X,, and X
respectively. If there exists ng and § > 0 such that Mx and My, are
finite on (—4,0) for n > ng, and

lim Mxn (t) = MX (t)

n—oo
for t € (=4,0), then X, B X asn— 0.
The following is a multivariate version of CLT (central limit theorem).

Theorem. Suppose that {X,}52, is a sequence of IID random vectors.
Let p be the mean vector of X; and X be the cova_riance matrix of Xj.
Suppose that all elements in ¢ and ¥ are finite. Let X = >""" | X;/n, then

V(X — p) B N(0,%) as n — oo.
The following is a univariate version of CLT.

Theorem. Suppose that {X,,}>°; is a sequence of IID random variables.
Let 4 = E(X;) and 0 = Var(X). Suppose that both y and o are finite.
Let X =>""" | X;/n, then

g

0,1) as n — oo.

We can prove the univariate version of CLT using Fact [3| assuming that
there exists 6 > 0 such that the MGF of X is finite on (-4, 9).

Example 5. Suppose that (X1, ..., X,,) is arandom sample from N (y, 0?),
where p1 € (—00,00) and o > 0. Let pp = E(X?) = p+ 0 and Y; = X?
fori=1,..,n Let X =" X;/nand Y = 3"  X?/n. Find the
limiting distribution of (v/n(X — u), vVn(Y — uz2))? as n — oo.

Ans. N((0,0)T,%), where

5 Var(X1) Cou(Xy,Y1) \ o? 2u0?
—\ Cov(X1,Y7) Var(Yr) T\ 2uo? 4pPo?+20% )

Example 6. Suppose that X is a random variable with m possible values
ai, ..., Gm, and (X1,...,X,,) is a random sample from the distribution of
X. Let p; = P(X = j) and

N
pj = Ezf{aj}(Xi)
i=1

for j =1, ..., m. Find the limiting distirbution of
V(pr =P, P — )

Ans. N((0,...,0)T, diag(p) — pp?), where p = (p1,...,pm)’, and diag(p)
is the diagonal matrix with the vector p in the diagonal.



Continuous mapping theorem for convergence in distribution.

Theorem. Suppose that X, B X and g is a continuous function, then
D
9(Xn) = g(X).

Example 7. In Example [f] find

(a) the limting distribution of

pP1—p1
V| ——— .
pi(l—p1)
(b) the limiting distribution of
A 2
P1—nN
n T 9
( pi(l— p1)>
(¢) the limiting distribution of

(P —p1)* (B — Pm)?

and

44
P1 Pm

Ans. (a) N(0,1) (b) x%(1) (c) x*(m — 1). Note that to find the limiting
distribution in (c), we apply the following result:

Fact 4 Suppose that U ~ N(0,%). If £2 = X, then UTU ~ x?(k), where
k = trace(X).

Here trace(X) denotes the trace of the matrix 3, which is the sum of the
diagonal elements of 3.

The following result is known as Slutsky’s theorem.
Theorem. Suppose that X, B X and Y. Bcasn— oo, where ¢ is a
constant. Then

(i) Xn+Yn2>X+casn—>oo, and

(i) X,Y, B cX asn — oo.

The proof of Slutsky’s theorem (Theorem 5.2.5 in the text) is omitted.

A multivarite version of Slutsky’s theorem. Suppose that X, and Y,, are

. D P .
random vectors in R*, X,, = X and Y,, = ¢ as n — oo, where ¢ is a
constant vector. Then



(i) X, +Y, B3 X +casn— oo, and
(ii) X, Y, B X xcasn— oo.

Here for w = (w1, ...,w;) and v = (vq,...,v;) in R¥, w * v is the vector
(wrv1, ..., wroE).

Example 8. Suppose that X, Z N(0,0?) as n — oo, where o > 0. Sup-
pose that {0, }2° , is a sequence of positive numbers so that lim,, o, 0, =
o. Find the limiting distribution of X, /o, as n — co.

Sol. Let Z be a random variable such that Z ~ N(0,0?), then X, Bz

as n — oo. Take Y,, = 1/0, for all n, then Y,, L 1/o as n — co. Apply
Slutsky’s theorem, we have

X,Y, Bolz

as n — oo. Since 071Z ~ N(0,1), N(0,1) is the limiting distribution of
XY, =X, /on as n — 0.

Example 9.  Suppose that (Xi,...,X,) is a random sample from a
distribution with finite mean ; and finite variance o?. Suppose that o > 0
and &, is a consistent estimator of o based on (Xi,...,X,). Find the
limiting distirbution of ~

V(X —p)

On

Sol. By assumption, &, = . Since the function f defined by flx)=0/z
for € (0,00) is continuous at o, by continuous mapping theorem, we

have
o

2 = f(60) B fl0) =2 =1,

From central limit theorem,

where Z ~ N(0, 1). Thus by Slutsky’s theorem,

\/ﬁ({?—u) _ ﬁ(X:—u), 51,
On g On
N
Bz 1

where Z ~ N(0,1). The limiting distribution of
V(X —p)

On

is N(0,1).



e The following result is known as Delta method.

Theorem. Suppose that {X,,}52, is a sequence of k x 1 random vectors
such that

V(X —n) B 2
as n — oo, where Z is a k x 1 random vector. Suppose that g is a
differentiable function such that g(X,,) is defined, then

D
Vin(g(Xn) = g(1) = (Dg(n))"Z (3)
as n — 00, where the column vector Dy(p) is the gradient of g evaluated
at p.
Note.
— When k=1, becomes

Valg(X,) —g(w) 3 ¢'(1)Z

as n — 00. In such case, Delta method can be proved using Slutsky’s
theorem, Fact [2[ and the continuous mapping theorem (for conver-
gence in probability).

e Example 10. Suppose that (X,..., X,,) is a random sample from I'(6, 1),
where 6 > 0.

(a) Find T,,: an estimator of # based on (X1,...,X,) so that
Va(T, — 0) B N(0,0?)

for some o > 0. Express o as a function of 6.

(b) Based on the estimator T, in Part (a), find W,: an estimator of 6
based on (X7i,...,X,,) so that

VW, —6%) B N(0,7?)
for some 7 > 0. Express 7 as a function of 6.

Ans. (a) We can take T, = >.» | X;/n, then 0 = V0. (b) W,, = T2,
T =200 = 26%/2.

e Suppose that we would like to construct a confidence interval of g(6) based
on a sample X = (X1,...,X,). Suppose that we can find a function h so
that

h(n, X, g(0)) 3 Dy

as n — 0o, where Dy is some distribution that does not depend on 6.
Then an approximate confidence interval of g(f) can be constructed by
treating h(n, X, g(0)) as a pivot with distribution Dy. This approach can
be justified by the following result when Dy has a continuous CDF:



Fact 5 Suppose that {X,,}52, is a sequence of random variables and X is

a random variable such that X, B X asn — . Suppose that the CDF
of X is continuous on (—oo,00). Then for every interval I C (—oo, o),

lim P(X, €I)=P(X €1I).

n—oo
The proof of Fact [5| can be established if

lim P(X,,=¢)=0=P(X =¢) (4)

n—o0

for every constant ¢. The reason is that P(X € I) can be computed using
P(X < z)and P(X = ¢) for some ¢, z, and we have

lim P(X, <z)=P(X <z

n—oo

for every z since X, B X and the CDF of X is continuous everywhere.
To prove , note that

limsup P(X,, =¢) < limsup[P(X, <c¢)— P(X, <c—h)]

n—oo n—oo

= PX<¢)—P(X<c—h)

for every h > 0. Since the CDF of X is continuous at ¢, lim;,_,o+ P(X <
¢)—P(X <c¢—h) =0, so limsup,,_,., P(X, =c¢) <0. It is clear that
liminf, . P(X, = ¢) > 0, so we must have

liminf P(X,, = ¢) = limsup P(X,, = ¢) = 0.

n—00 n—00

Example 11. In Exarnple construct an approximate (1 —«) confidence
interval of 0 for a € (0, 1).

Sol. Let X =" | X;/n. In Example we have for Z ~ N(0,0),
V(X -0)3z

as n — 0o. By WLLN, X 5 E(X;) = 6, so

1
%

X Vo

=

which implies that

V(X - 6) <1> 3 <\}§>Z~N(O,1) as n — 00

gN(O,l) as n — oo.



Let z4 /2 be the (1 — «/2) quantile of N (0, 1), then P(—z,/2 < N(0,1) <
Zas2) =1 —a, s0

P(Za/g < \/w <za/2) ~1l—a

for large n. Since

Vi(X - 6)

_Za/2< ﬁ <Za/2
o zapVX  zapVX
@96<X—'Z/\2/E,X+Z/\2/ﬁ ,

an approximate (1 — «) confidence interval of 6 is

— Za/gﬁ = Za/g\/)T(
X o2 YR gy a2t
vn Vvn
Example 12. Write down R scripts to find estimated coverage probability
for the approximate (1 — a) confidence interval of § in Example for
a =0.05, n =100 and 6 € {1,10}. The coverage probability is estimated
by p, where p is obtained by carrying out Steps (a)—(d):

(a) Generate 500 random samples of size n from I'(6,1).
(b) Compute the 500 observed confidence intervals.

(¢c) Compute N: the number of observed confidence intervals that con-
tains 6.

(d) Take p = N/500.

Sol. We first write an R function test with two input variables theta and
x, where x is a sample. The function output is 1 if the observed confidence
interval of # contains the input theta and is 0 otherwise.

test <- function(theta, x){

alpha <- 0.05

z <- gnorm(l-alpha/2)

n <- length(x)

x.bar <- mean(x)

d <- z*sqrt(x.bar)/sqrt(n)

ci.lb <- x.bar - d

ci.ub <- x.bar + d

if ( (ci.lb < theta)&(theta < ci.ub) ) { ans <- 1 } else { ans <- 0 }
return(ans)

10



The R scripts for finding estimated estimated coverage probability when
n =100 and 6 = 1 is given below:

theta <- 1
n <- 100
set.seed(1)
res <- rep(0, 500) #vector for storing coverage results for the 500 samples
for (i in 1:500){
x <- rgamma(n, shape = theta, scale =1)
res[i] <- test(theta, x)
}
mean(res) #0.95

The estimated coverage probability when n = 100 and § = 10 can be
obtained by replacing

theta <- 1

with

theta <- 10
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