
Estimation and types of convergence

• When we have IID data X1, . . ., Xn, (X1, . . ., Xn) is called a random
sample and n is called the sample size of the random sample. In such
case, if the distribution of Xi is D, then we say that (X1, . . ., Xn) is a
random sample from the distribution D.

• Suppose that (X1, . . ., Xn) is a random sample from an unknown distribu-
tion D, then we can estimate D based on the random sample. A common
approach is to assume that D is determined by a vector θ ∈ Rk for some k.
Then the problem of estimating D becomes the problem of estimating θ.
In such case, the estimation problem is known as a parametric estimation
problem and θ is called a parameter vector.

– Example of a parametric estimation problem. Suppose that (X1, . . .,
Xn) is a random sample from N(µ, σ2), where µ ∈ R and σ > 0 are
unknown. Let θ = (µ, σ). Then we only need to estimate θ based on
the sample to learn about the distribution of X1.

• Identifiability. Suppose that C is a collection of distributions given by
C = {Qθ : θ ∈ Θ}, where Θ is a specified subset in Rk. Then C is also
called a family of distributions. The family C is identifiable means that
for θ1, θ2 ∈ Θ,

Qθ1 = Qθ2 ⇒ θ1 = θ2.

• Example 1. Let C = {N(µ, σ2) : (µ, σ) ∈ R2}. Then the family C is not
identifiable. To see this, let (µ1, σ1) = (0, 1) and (µ2, σ2) = (0,−1), then
(µ1, σ1), (µ2, σ2) are two points in R2 such that

N(µ1, σ
2
1) = N(0, 1) = N(µ2, σ

2
2)

yet
(µ1, σ1) ̸= (µ2, σ2).

Therefore, the family C is not identifiable.

• Estimator. Suppose that (X1, . . ., Xn) is a random sample from a distribu-
tion determined by a parameter vector θ. To estimate g(θ): some quantity
determined by θ, we usually use some quantity that can approximate g(θ)
well and be computed based on the sample. Such a quantity is called an
estimator of g(θ) (g(θ)的估計量). A quantity that can be computed based
on the sample is called a statistic (統計量).

• To establish good approximation property of an estimator, we often need
to apply some results about the convergence of a sequence of random
variables (or random vectors), including

– LLN (law of large numbers)

– CLT (central limit theorem)
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– continuous mapping theorem

– Slutsky’s theorem

– Delta method

• We will learn about three types of convergence of sequences of random
vectors.

– Almost surely convergence

– Convergence in probability

– Convergence in distribution

• Almost surely convergence. Suppose that {Yn}∞n=1 is a sequence of random
vectors in Rk on the probability space (Ω,F , P ) and Y is also a random
vector in Rk on (Ω,F , P ). If

P
(
{w ∈ Ω : lim

n→∞
Yn(w) = Y (w)}

)
= 1, (1)

then we say that Yn converges to Y almost surely as n → ∞. Here the
distance between Yn(w) and Y (w) is ∥Yn(w)− Y (w)∥, where ∥ · ∥ denotes
the Euclidean norm.

• Convergence in probability. Suppose that {Yn}∞n=1 is a sequence of random
vectors in Rk on the probability space (Ω,F , P ) and Y is also a random
vector in Rk on (Ω,F , P ). If

lim
n→∞

P ({w ∈ Ω : ∥Yn(w)− Y (w)∥ > ε}) = 0 for every ε > 0, (2)

then we say that Yn converges to Y in probability as n → ∞. The con-

vergence is often denoted by Yn
P→ Y as n → ∞.

• Note. It can be shown that (1) implies that (2).

• Strong law of large numbers (SLLN, 強大數法則). Suppose that X1, . . .,
Xn are IID random variables and E(X1) is finite. Let X̄ =

∑n
i=1 Xi/n,

then X̄ converges to E(X1) almost surely as n → ∞.

• A version of weak law of large numbers (WLLN, 弱大數法則) is given in
Theorem 5.1.1 in the text.

Fact 1 (Theorem 5.1.1 in the text) Suppose that X1, . . ., Xn are IID
random variables and E(X1) and V ar(X1) are finite. Let X̄ =

∑n
i=1 Xi/n,

then X̄
P→ E(X1) as n → ∞.

Note.

– The proof of Fact 1 can be based on Chebyshev’s inequality or Markov’s
inequality.
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– Since almost surely convergence implies convergence in probability,
the assumption that V ar(X1) is finite is not needed in Fact 1.

• Suppose that we use a statistic Tn to estimate some quantity g(θ), where
n is the sample size and the distribution of the sample is determined by

θ. If Tn
P→ g(θ) as n → ∞, then Tn is called a consistent estimator of g(θ)

(Tn為g(θ)的一致估計量).

• Example 2. Suppose that (X1, . . ., Xn) is a random sample and µ =
E(X1) is finite. Which of the following statements are true?

(a)
∑n

i=1 Xi/n is a consistent estimator of µ.

(b) 1 +
∑n

i=1 Xi/n is a consistent estimator of 1 + µ.

(c) µ+
∑n

i=1 Xi/n is a consistent estimator of 2µ.

Ans. (a)(b)

• Example 3. Suppose that we have IID data X1, . . ., Xn, then for t ∈ R,
a consistent estimator of P (X1 ≤ t) is

1

n

n∑
i=1

I(−∞,t](Xi).

• In Example 3, for t ∈ R, let

F̂ (t) =
1

n

n∑
i=1

I(−∞,t](Xi).

Then F̂ is call the empirical CDF based on (X1, . . . , Xn).

• Suppose that (X1, . . . , Xn) is a random sample from a distribution with
CDF F . Then one can test whether

H0 : F = F0

based on the sample using the Kolmogorov-Smirnov test, which rejects H0

when
sup
x∈R

|F̂ (x)− F0(x)|

is large, where F̂ is the empirical CDF based on (X1, . . . , Xn).

– To test whether the CDF F =F0 based on the sample x= (X1, . . . , Xn)
using the Kolmogorov-Smirnov test, the R command is

ks.test(x, F0)
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• The following result is used to establish convergence in probability under
a continuous transformation, which is a version of continuous mapping
theorem (for convergence in probability).

Theorem. Suppose that {Xn}∞n=1 is a sequence of random vectors in Rk

and Xn
P→ X as n → ∞. Suppose that g is a continuous function on Rk.

Then g(Xn)
P→ g(X) as n → ∞.

• The following is another version of continuous mapping theorem.

Theorem. Suppose that c is a vector of constants and Xn
P→ c as n → ∞.

Suppose that g is a function that takes values in Rk and is continuous at

c. Then g(Xn)
P→ g(c) as n → ∞. The proof of the above version of

continuous mapping theorem is based on the definition of convergence in
probability.

• Example 4. Suppose that (X1, . . . , Xn) is a random sample, both E(X1)
and V ar(X1) are finite, and V ar(X1) > 0. Let µ = E(X1) and σ2 =
V ar(X1). Let X̄n =

∑n
i=1 Xi/n and Ȳn =

∑n
i=1 X

2
i /n, then from the

WLLN, X̄n and Ȳn are consistent estimators of µ and σ2+µ2 respectively.
Find a consistent estimator of σ.

Ans. (Ȳn − X̄2
n)

1/2.

• Convergence in distribution. Suppose that {Xn}∞n=1 is a sequence of ran-
dom vectors in Rk and X is a random vector in Rk with CDF FX . If

lim
n→∞

P (Xn ≤ t) = FX(t)

for every t that is a continuity point of FX , then we say that Xn converges
in distribution to X as n → ∞, denoted by

Xn
D→ X or Xn

D→ DX ,

where DX is the distribution of X. We will say that DX is the limiting
distribution of Xn.

• Note. Xn
P→ X implies that Xn

D→ X but not vice versa. However, we
have the following result:

Fact 2 Suppose that Xn
D→ c as n → ∞ and c is a vector of constants,

then Xn
P→ c as n → ∞.

Note. The special case where c is a constant is given in Theorem 5.2.2 in
the text.

• Convergence in distribution for the univariate case can be established using
convergence of MGFs according to Theorem 3 in [1]. Below is a modified
version.
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Fact 3 Suppose that {Xn}∞n=1 is a sequence of random variables and X
is a random variable. Let MXn and MX denote the MGFs of Xn and X
respectively. If there exists n0 and δ > 0 such that MX and MXn

are
finite on (−δ, δ) for n ≥ n0, and

lim
n→∞

MXn(t) = MX(t)

for t ∈ (−δ, δ), then Xn
D→ X as n → ∞.

• The following is a multivariate version of CLT (central limit theorem).

Theorem. Suppose that {Xn}∞n=1 is a sequence of IID random vectors.
Let µ be the mean vector of X1 and Σ be the covariance matrix of X1.
Suppose that all elements in µ and Σ are finite. Let X̄ =

∑n
i=1 Xi/n, then

√
n(X̄ − µ)

D→ N(0,Σ) as n → ∞.

• The following is a univariate version of CLT.

Theorem. Suppose that {Xn}∞n=1 is a sequence of IID random variables.
Let µ = E(X1) and σ2 = V ar(X1). Suppose that both µ and σ are finite.
Let X̄ =

∑n
i=1 Xi/n, then

√
n(X̄ − µ)

σ

D→ N(0, 1) as n → ∞.

We can prove the univariate version of CLT using Fact 3 assuming that
there exists δ > 0 such that the MGF of X1 is finite on (−δ, δ).

• Example 5. Suppose that (X1, . . . , Xn) is a random sample fromN(µ, σ2),
where µ ∈ (−∞,∞) and σ > 0. Let µ2 = E(X2

1 ) = µ + σ2 and Yi = X2
i

for i = 1, . . ., n. Let X̄ =
∑n

i=1 Xi/n and Ȳ =
∑n

i=1 X
2
i /n. Find the

limiting distribution of (
√
n(X̄ − µ),

√
n(Ȳ − µ2))

T as n → ∞.

Ans. N((0, 0)T ,Σ), where

Σ =

(
V ar(X1) Cov(X1, Y1)

Cov(X1, Y1) V ar(Y1)

)
=

(
σ2 2µσ2

2µσ2 4µ2σ2 + 2σ4

)
.

• Example 6. Suppose that X is a random variable with m possible values
a1, . . ., am, and (X1, . . . , Xn) is a random sample from the distribution of
X. Let pj = P (X = j) and

p̂j =
1

n

n∑
i=1

I{aj}(Xi)

for j = 1, . . ., m. Find the limiting distirbution of
√
n(p̂1 − p1, . . . , p̂m − pm)T .

Ans. N((0, . . . , 0)T ,diag(p)−ppT ), where p = (p1, . . . , pm)T , and diag(p)
is the diagonal matrix with the vector p in the diagonal.
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• Continuous mapping theorem for convergence in distribution.

Theorem. Suppose that Xn
D→ X and g is a continuous function, then

g(Xn)
D→ g(X).

• Example 7. In Example 6, find

(a) the limting distribution of

√
n

(
p̂1 − p1√
p1(1− p1)

)
,

(b) the limiting distribution of

n

(
p̂1 − p1√
p1(1− p1)

)2

,

and

(c) the limiting distribution of

n

(
(p̂1 − p1)

2

p1
+ · · ·+ (p̂m − pm)2

pm

)
.

Ans. (a) N(0, 1) (b) χ2(1) (c) χ2(m − 1). Note that to find the limiting
distribution in (c), we apply the following result:

Fact 4 Suppose that U ∼ N(0,Σ). If Σ2 = Σ, then UTU ∼ χ2(k), where
k = trace(Σ).

Here trace(Σ) denotes the trace of the matrix Σ, which is the sum of the
diagonal elements of Σ.

• The following result is known as Slutsky’s theorem.

Theorem. Suppose that Xn
D→ X and Yn

P→ c as n → ∞, where c is a
constant. Then

(i) Xn + Yn
D→ X + c as n → ∞, and

(ii) XnYn
D→ cX as n → ∞.

The proof of Slutsky’s theorem (Theorem 5.2.5 in the text) is omitted.

• A multivarite version of Slutsky’s theorem. Suppose that Xn and Yn are

random vectors in Rk, Xn
D→ X and Yn

P→ c as n → ∞, where c is a
constant vector. Then
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(i) Xn + Yn
D→ X + c as n → ∞, and

(ii) Xn ∗ Yn
D→ X ∗ c as n → ∞.

Here for w = (w1, . . . , wk) and v = (v1, . . . , vk) in Rk, w ∗ v is the vector
(w1v1, . . . , wkvk).

• Example 8. Suppose that Xn
D→ N(0, σ2) as n → ∞, where σ > 0. Sup-

pose that {σn}∞n=1 is a sequence of positive numbers so that limn→∞ σn =
σ. Find the limiting distribution of Xn/σn as n → ∞.

Sol. Let Z be a random variable such that Z ∼ N(0, σ2), then Xn
D→ Z

as n → ∞. Take Yn = 1/σn for all n, then Yn
P→ 1/σ as n → ∞. Apply

Slutsky’s theorem, we have

XnYn
D→ σ−1Z

as n → ∞. Since σ−1Z ∼ N(0, 1), N(0, 1) is the limiting distribution of
XnYn = Xn/σn as n → ∞.

• Example 9. Suppose that (X1, . . . , Xn) is a random sample from a
distribution with finite mean µ and finite variance σ2. Suppose that σ > 0
and σ̂n is a consistent estimator of σ based on (X1, . . . , Xn). Find the
limiting distirbution of √

n(X̄ − µ)

σ̂n
.

Sol. By assumption, σ̂n
P→ σ. Since the function f defined by f(x) = σ/x

for x ∈ (0,∞) is continuous at σ, by continuous mapping theorem, we
have

σ

σ̂n
= f(σ̂n)

P→ f(σ) =
σ

σ
= 1.

From central limit theorem,

√
n(X̄ − µ)

σ

D→ Z,

where Z ∼ N(0, 1). Thus by Slutsky’s theorem,

√
n(X̄ − µ)

σ̂n
=

√
n(X̄ − µ)

σ̂︸ ︷︷ ︸
D→Z

· σ̂

σ̂n︸︷︷︸
P→1

D→ Z,

where Z ∼ N(0, 1). The limiting distribution of

√
n(X̄ − µ)

σ̂n

is N(0, 1).
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• The following result is known as Delta method.

Theorem. Suppose that {Xn}∞n=1 is a sequence of k × 1 random vectors
such that √

n(Xn − µ)
D→ Z

as n → ∞, where Z is a k × 1 random vector. Suppose that g is a
differentiable function such that g(Xn) is defined, then

√
n(g(Xn)− g(µ))

D→ (Dg(µ))
TZ (3)

as n → ∞, where the column vector Dg(µ) is the gradient of g evaluated
at µ.

Note.

– When k = 1, (3) becomes

√
n(g(Xn)− g(µ))

D→ g′(µ)Z

as n → ∞. In such case, Delta method can be proved using Slutsky’s
theorem, Fact 2 and the continuous mapping theorem (for conver-
gence in probability).

• Example 10. Suppose that (X1, . . . , Xn) is a random sample from Γ(θ, 1),
where θ > 0.

(a) Find Tn: an estimator of θ based on (X1, . . . , Xn) so that

√
n(Tn − θ)

D→ N(0, σ2)

for some σ > 0. Express σ as a function of θ.

(b) Based on the estimator Tn in Part (a), find Wn: an estimator of θ
based on (X1, . . . , Xn) so that

√
n(Wn − θ2)

D→ N(0, τ2)

for some τ > 0. Express τ as a function of θ.

Ans. (a) We can take Tn =
∑n

i=1 Xi/n, then σ =
√
θ. (b) Wn = T 2

n ,
τ = 2θσ = 2θ3/2.

• Suppose that we would like to construct a confidence interval of g(θ) based
on a sample X = (X1, . . . , Xn). Suppose that we can find a function h so
that

h(n,X, g(θ))
D→ D0

as n → ∞, where D0 is some distribution that does not depend on θ.
Then an approximate confidence interval of g(θ) can be constructed by
treating h(n,X, g(θ)) as a pivot with distribution D0. This approach can
be justified by the following result when D0 has a continuous CDF:
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Fact 5 Suppose that {Xn}∞n=1 is a sequence of random variables and X is

a random variable such that Xn
D→ X as n → ∞. Suppose that the CDF

of X is continuous on (−∞,∞). Then for every interval I ⊂ (−∞,∞),

lim
n→∞

P (Xn ∈ I) = P (X ∈ I).

The proof of Fact 5 can be established if

lim
n→∞

P (Xn = c) = 0 = P (X = c) (4)

for every constant c. The reason is that P (X ∈ I) can be computed using
P (X ≤ x) and P (X = c) for some c, x, and we have

lim
n→∞

P (Xn ≤ x) = P (X ≤ x)

for every x since Xn
D→ X and the CDF of X is continuous everywhere.

To prove (4), note that

lim sup
n→∞

P (Xn = c) ≤ lim sup
n→∞

[P (Xn ≤ c)− P (Xn ≤ c− h)]

= P (X ≤ c)− P (X ≤ c− h)

for every h > 0. Since the CDF of X is continuous at c, limh→0+ P (X ≤
c) − P (X ≤ c − h) = 0, so lim supn→∞ P (Xn = c) ≤ 0. It is clear that
lim infn→∞ P (Xn = c) ≥ 0, so we must have

lim inf
n→∞

P (Xn = c) = lim sup
n→∞

P (Xn = c) = 0.

• Example 11. In Example 10, construct an approximate (1−α) confidence
interval of θ for α ∈ (0, 1).

Sol. Let X̄ =
∑n

i=1 Xi/n. In Example 10, we have for Z ∼ N(0, θ),

√
n(X̄ − θ)

D→ Z

as n → ∞. By WLLN, X̄
P→ E(X1) = θ, so

1√
X̄

P→ 1√
θ
,

which implies that

√
n(X̄ − θ)

(
1√
X̄

)
D→
(

1√
θ

)
Z ∼ N(0, 1) as n → ∞

by Slutsky’s theorem. That is,

√
n(X̄ − θ)√

X̄

D→ N(0, 1) as n → ∞.
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Let zα/2 be the (1− α/2) quantile of N(0, 1), then P (−zα/2 < N(0, 1) <
zα/2) = 1− α, so

P

(
−zα/2 <

√
n(X̄ − θ)√

X̄
< zα/2

)
≈ 1− α

for large n. Since

−zα/2 <

√
n(X̄ − θ)√

X̄
< zα/2

⇔ θ ∈

(
X̄ −

zα/2
√
X̄

√
n

, X̄ +
zα/2

√
X̄

√
n

)
,

an approximate (1− α) confidence interval of θ is(
X̄ −

zα/2
√
X̄

√
n

, X̄ +
zα/2

√
X̄

√
n

)
.

• Example 12. Write down R scripts to find estimated coverage probability
for the approximate (1 − α) confidence interval of θ in Example 11 for
α = 0.05, n = 100 and θ ∈ {1, 10}. The coverage probability is estimated
by p̂, where p̂ is obtained by carrying out Steps (a)–(d):

(a) Generate 500 random samples of size n from Γ(θ, 1).

(b) Compute the 500 observed confidence intervals.

(c) Compute N : the number of observed confidence intervals that con-
tains θ.

(d) Take p̂ = N/500.

Sol. We first write an R function test with two input variables theta and
x, where x is a sample. The function output is 1 if the observed confidence
interval of θ contains the input theta and is 0 otherwise.

test <- function(theta, x){

alpha <- 0.05

z <- qnorm(1-alpha/2)

n <- length(x)

x.bar <- mean(x)

d <- z*sqrt(x.bar)/sqrt(n)

ci.lb <- x.bar - d

ci.ub <- x.bar + d

if ( (ci.lb < theta)&(theta < ci.ub) ) { ans <- 1 } else { ans <- 0 }

return(ans)

}
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The R scripts for finding estimated estimated coverage probability when
n = 100 and θ = 1 is given below:

theta <- 1

n <- 100

set.seed(1)

res <- rep(0, 500) #vector for storing coverage results for the 500 samples

for ( i in 1:500){

x <- rgamma(n, shape = theta, scale =1)

res[i] <- test(theta, x)

}

mean(res) #0.95

The estimated coverage probability when n = 100 and θ = 10 can be
obtained by replacing

theta <- 1

with

theta <- 10
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