
Central Limit Theorem and approximate confidence intervals

• Convergence in distribution. Suppose that {Xn}∞n=1 is a sequence of ran-
dom vectors in Rk and X is a random vector in Rk with CDF FX . If

lim
n→∞

P (Xn ≤ t) = FX(t)

for every t that is a continuity point of FX , then we say that Xn converges
in distribution to X as n→∞, denoted by

Xn
D→ X or Xn

D→ DX ,

where DX is the distribution of X. We will say that DX is the limiting
distribution of Xn.

• Note. Xn
P→ X implies that Xn

D→ X but not vice versa. However, we
have the following result:

Fact 1 Suppose that Xn
D→ 0 as n→∞, then Xn

P→ 0 as n→∞.

Fact 1 is a special case of Theorem 5.2.2 in the text and the proof can be
found thereof.

• The following result is known as Slutsky’s theorem.

Theorem. Suppose that Xn
D→ X and Yn

P→ c as n → ∞, where c is a
constant. Then

(i) Xn + Yn
D→ X + c as n→∞, and

(ii) XnYn
D→ cX as n→∞.

The proof of Slutsky’s theorem (Theorem 5.2.5 in the text) is omitted.

• Example 1. Suppose that Xn
D→ N(0, σ2) as n→∞, where σ > 0. Sup-

pose that {σn}∞n=1 is a sequence of positive numbers so that limn→∞ σn =
σ. Find the limiting distribution of Xn/σn as n→∞.

Sol. Let Z be a random variable such that Z ∼ N(0, σ2), then Xn
D→ Z

as n → ∞. Take Yn = 1/σn for all n, then Yn
P→ 1/σ as n → ∞. Apply

Slutsky’s theorem, we have

XnYn
D→ σ−1Z

as n → ∞. Since σ−1Z ∼ N(0, 1), N(0, 1) is the limiting distribution of
XnYn = Xn/σn as n→∞.

• The following result is used to establish convergence in probability under
a continuous transformation.
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Fact 2 Suppose that Xn
P→ c as n → ∞ and g is continuous at c. Then

g(Xn)
P→ g(c) as n → ∞. Here each one of c and g(c) can be a constant

or a vector of constants.

The proof of Fact 2 is based on the definition of convergence in probability.

• Example 2. Suppose that (X1, . . . , Xn) is a random sample, both E(X1)
and V ar(X1) are finite, and V ar(X1) > 0. Let µ = E(X1) and σ2 =
V ar(X1). Let X̄n =

∑n
i=1Xi/n and Ȳn =

∑n
i=1X

2
i /n, then from the

WLLN, X̄n and Ȳn are consistent estimators of µ and σ2+µ2 respectively.
Find a consistent estimator of σ.

Ans. (Ȳn − X̄2
n)1/2.

• Convergence in distribution for the univariate case can be established using
convergence of MGFs according to Theorem 3 in [1]. Below is a modified
version.

Fact 3 Suppose that {Xn}∞n=1 is a sequence of random variables and X
is a random variable. Let MXn and MX denote the MGFs of Xn and X
respectively. If there exists n0 and δ > 0 such that MX and MXn

are finite
on (−δ, δ) for n ≥ n0, and

lim
n→∞

MXn
(t) = MX(t)

for t ∈ (−δ, δ), then Xn
D→ X as n→∞.

• The following is a multivariate version of Central Limit Theorem (CLT).

Theorem. Suppose that {Xn}∞n=1 is a sequence of IID random vectors.
Let µ be the mean vector of X1 and Σ be the covariance matrix of X1.
Suppose that all elements in µ and Σ are finite. Let X̄ =

∑n
i=1Xi/n,

then √
n(X̄ − µ)

D→ N(0,Σ) as n→∞.

• The following is a univariate version of Central Limit Theorem (CLT).

Theorem. Suppose that {Xn}∞n=1 is a sequence of IID random variables.
Let µ = E(X1) and σ2 = V ar(X1). Suppose that both µ and Σ are finite.
Let X̄ =

∑n
i=1Xi/n, then

√
n(X̄ − µ)

σ

D→ N(0, 1) as n→∞.

We can prove the univariate version of CLT using Fact 3 assuming that
there exists δ > 0 such that the MGF of X1 is finite on (−δ, δ).
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• Example 3. Suppose that (X1, . . . , Xn) is a random sample fromN(µ, σ2),
where µ ∈ (−∞,∞) and σ > 0. Let µ2 = E(X2

1 ) = µ + σ2 and Yi = X2
i

for i = 1, . . ., n. Let X̄ =
∑n
i=1Xi/n and Ȳ =

∑n
i=1X

2
i /n. Find the

limiting distribution of (
√
n(X̄ − µ),

√
n(Ȳ − µ2))T as n→∞.

Ans. N((0, 0)T ,Σ), where

Σ =

(
V ar(X1) Cov(X1, Y1)

Cov(X1, Y1) V ar(Y1)

)
=

(
σ2 2µσ2

2µσ2 4µ2σ2 + 2σ4

)
.

• The following result is known as Delta method.

Theorem. Suppose that {Xn}∞n=1 is a sequence of k× 1 random vectors
such that √

n(Xn − µ)
D→ Z

as n → ∞, where Z is a k × 1 random vector. Suppose that g is a
differentiable function such that g(Xn) is defined, then

√
n(g(Xn)− g(µ))

D→ (Dg(µ))TZ (1)

as n → ∞, where the column vector Dg(µ) is the gradient of g evaluated
at µ.

Note.

– When k = 1, (1) becomes

√
n(g(Xn)− g(µ))

D→ g′(µ)Z

as n→∞. In such case, Delta method can be proved using Slutsky’s
theorem, Fact 1 and Fact 2.

• Example 4. Suppose that (X1, . . . , Xn) is a random sample from Γ(θ, 1),
where θ > 0.

(a) Find Tn: an estimator of θ based on (X1, . . . , Xn) so that

√
n(Tn − θ)

D→ N(0, σ2)

for some σ > 0. Express σ as a function of θ.

(b) Based on the estimator Tn in Part (a), find Wn: an estimator of θ
based on (X1, . . . , Xn) so that

√
n(Wn − θ2)

D→ N(0, τ2)

for some τ > 0. Express τ as a function of θ.

Ans. (a) We can take Tn =
∑n
i=1Xi/n, then σ =

√
θ. (b) Wn = T 2

n ,
τ = 2θσ = 2θ3/2.
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• Suppose that we would like to construct a confidence interval of g(θ) based
on a sample X = (X1, . . . , Xn). Suppose that we can find a function h so
that

h(n,X, g(θ))
D→ D0

as n → ∞, where D0 is some distribution that does not depend on θ.
Then an approximate confidence interval of g(θ) can be constructed by
treating h(n,X, g(θ)) as a pivot with distribution D0. This approach can
be justified by the following result when D0 has a continuous CDF:

Fact 4 Suppose that {Xn}∞n=1 is a sequence of random variables and X is

a random variable such that Xn
D→ X as n → ∞. Suppose that the CDF

of X is continuous on (−∞,∞). Then for every interval I ⊂ (−∞,∞),

lim
n→∞

P (Xn ∈ I) = P (X ∈ I).

The proof of Fact 4 can be established if

lim
n→∞

P (Xn = c) = 0 = P (X = c) (2)

for every constant c. The reason is that P (X ∈ I) can be computed using
P (X ≤ x) and P (X = c) for some c, x, and we have

lim
n→∞

P (Xn ≤ x) = P (X ≤ x)

for every x since Xn
D→ X and the CDF of X is continuous everywhere.

To prove (2), note that

lim sup
n→∞

P (Xn = c) ≤ lim sup
n→∞

[P (Xn ≤ c)− P (Xn ≤ c− h)]

= P (X ≤ c)− P (X ≤ c− h)

for every h > 0. Since the CDF of X is continuous at c, limh→0+ P (X ≤
c) − P (X ≤ c − h) = 0, so lim supn→∞ P (Xn = c) ≤ 0. It is clear that
lim infn→∞ P (Xn = c) ≥ 0, so we must have

lim inf
n→∞

P (Xn = c) = lim sup
n→∞

P (Xn = c) = 0.

• Example 5. In Example 4, construct an approximate (1− α) confidence
interval of θ for α ∈ (0, 1).

Sol. Let X̄ =
∑n
i=1Xi/n. In Example 4, we have for Z ∼ N(0, θ),

√
n(X̄ − θ) D→ Z

as n→∞. By WLLN, X̄
P→ E(X1) = θ, so

1√
X̄

P→ 1√
θ
,
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which implies that

√
n(X̄ − θ)

(
1√
X̄

)
D→
(

1√
θ

)
Z ∼ N(0, 1) as n→∞

by Slutsky’s theorem. That is,

√
n(X̄ − θ)√

X̄

D→ N(0, 1) as n→∞.

Let zα/2 be the (1− α/2) quantile of N(0, 1), then P (−zα/2 < N(0, 1) <
zα/2) = 1− α, so

P

(
−zα/2 <

√
n(X̄ − θ)√

X̄
< zα/2

)
≈ 1− α

for large n. Since

−zα/2 <
√
n(X̄ − θ)√

X̄
< zα/2

⇔ θ ∈

(
X̄ −

zα/2
√
X̄

√
n

, X̄ +
zα/2
√
X̄

√
n

)
,

an approximate (1− α) confidence interval of θ is(
X̄ −

zα/2
√
X̄

√
n

, X̄ +
zα/2
√
X̄

√
n

)
.

• Example 6. Write down R scripts to find estimated coverage probability
for the approximate (1 − α) confidence interval of θ in Example 5 for
α = 0.05, n = 100 and θ ∈ {1, 10}. The coverage probability is estimated
by p̂, where p̂ is obtained by carrying out Steps (a)–(d):

(a) Generate 500 random samples of size n from Γ(θ, 1).

(b) Compute the 500 observed confidence intervals.

(c) Compute N : the number of observed confidence intervals that con-
tains θ.

(d) Take p̂ = N/500.

Sol. We first write an R function test with two input variables theta and
x, where x is a sample. The function output is 1 if the observed confidence
interval of θ contains the input theta and is 0 otherwise.

test <- function(theta, x){

alpha <- 0.05
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z <- qnorm(1-alpha/2)

n <- length(x)

x.bar <- mean(x)

d <- z*sqrt(x.bar)/sqrt(n)

ci.lb <- x.bar - d

ci.ub <- x.bar + d

if ( (ci.lb < theta)&(theta < ci.ub) ) { ans <- 1 } else { ans <- 0 }

return(ans)

}

The R scripts for finding estimated estimated coverage probability when
n = 100 and θ = 1 is given below:

theta <- 1

n <- 100

set.seed(1)

res <- rep(0, 500) #vector for storing coverage results for the 500 samples

for ( i in 1:500){

x <- rgamma(n, shape = theta, scale =1)

res[i] <- test(theta, x)

}

mean(res) #0.95

The estimated coverage probability when n = 100 and θ = 10 can be
obtained by replacing

theta <- 1

with

theta <- 10
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