Central Limit Theorem and approximate confidence intervals

e Convergence in distribution. Suppose that {X,,}22; is a sequence of ran-
dom vectors in R* and X is a random vector in R* with CDF Fyx. If

lim P(X, <t) = Fx(t)

n—0o0

for every t that is a continuity point of F'x, then we say that X,, converges
in distribution to X as n — oo, denoted by

X, 2 Xor X, 2 Dy,

where Dx is the distribution of X. We will say that Dx is the limiting
distribution of X,,.

e Note. X, 2 x implies that X, B X but not vice versa. However, we
have the following result:

Fact 1 Suppose that X, B0asn— oo, then X, 20 asn — oo.

Fact 1 is a special case of Theorem 5.2.2 in the text and the proof can be
found thereof.

e The following result is known as Slutsky’s theorem.
Theorem. Suppose that X, B X and Y, Ecasn— 00, where ¢ is a
constant. Then
(i) X, +Y, B X+ec as n — 0o, and

(ii) X, Y, B X asn — 0.
The proof of Slutsky’s theorem (Theorem 5.2.5 in the text) is omitted.

e Example 1. Suppose that X, 3 N(0,0?) as n — oo, where o > 0. Sup-
pose that {o,}22 ; is a sequence of positive numbers so that lim, ., 0y, =
o. Find the limiting distribution of X, /o, as n — oco.

Sol. Let Z be a random variable such that Z ~ N(0,0?), then X, Bz

as n — oo. Take Y, = 1/0, for all n, then Y,, it 1/o as n — co. Apply
Slutsky’s theorem, we have

XY, Bolz

as n — o0o. Since 07 1Z ~ N(0,1), N(0,1) is the limiting distribution of
XY, =X, /o, as n — 0.

e The following result is used to establish convergence in probability under
a continuous transformation.



Fact 2 Suppose that X, B casn — oo and g s continuous at c. Then

9(Xn) A g(c) as m — oo. Here each one of ¢ and g(c) can be a constant
or a vector of constants.

The proof of Fact[2]is based on the definition of convergence in probability.

Example 2. Suppose that (X1,...,X,,) is a random sample, both F(X)
and Var(X;) are finite, and Var(X;) > 0. Let p = E(X;) and 0% =
Var(X1). Let X, = >0, X;/n and Y,, = >_I" | X?/n, then from the
WLLN, X,, and Y,, are consistent estimators of ; and o2+ p? respectively.
Find a consistent estimator of .

Ans. (Y, — )_(2)1/2.

Convergence in distribution for the univariate case can be established using
convergence of MGF's according to Theorem 3 in [I]. Below is a modified
version.

Fact 3 Suppose that {X,}2, is a sequence of random variables and X
is a random variable. Let Mx, and Mx denote the MGFs of X, and X
respectively. If there exists ng and § > 0 such that Mx and Mx, are finite
on (—6,98) for n > ng, and

lim My, (t) = Mx(t)

n—oo
fort e (=9,9), then X, B X asn— oo.
The following is a multivariate version of Central Limit Theorem (CLT).

Theorem. Suppose that {X,}22, is a sequence of IID random vectors.
Let pv be the mean vector of X1 and X be the covariance matriz of X .
Suppose that all elements in p and ¥ are finite. Let X = Y. | X;/n,
then

V(X — p) B N(0,%) as n — oco.
The following is a univariate version of Central Limit Theorem (CLT).

Theorem. Suppose that {X,,}52 is a sequence of IID random variables.
Let p = E(Xy) and 0® = Var(X1). Suppose that both i and ¥ are finite.
Let X =" | X;/n, then
X —
VX —p) p N(0,1)

g

as n — o0.

We can prove the univariate version of CLT using Fact [3] assuming that
there exists 6 > 0 such that the MGF of X is finite on (-4, 9).



e Example 3. Suppose that (X1,..., X,,) is a random sample from N (u, 0?),
where 11 € (—00,00) and o > 0. Let yp = E(X?) = u+0? and Y; = X?
fori=1,..,n Let X =Y X;/nand Y = 3"  X2/n. Find the
limiting distribution of (v/n(X — p), v/n(Y — u2))T as n — oc.

Ans. N((0,0)T,3), where

5 Var(X1) Cou(X1,Y1) \ o? 20
“\ Cov(X1,Y1) Var(Yr) T\ 2uo? 4pPo? +20% )

e The following result is known as Delta method.

Theorem. Suppose that {X,,}°2; is a sequence of k x 1 random vectors
such that

(X, —p) Bz

as n — oo, where Z is a k X 1 random vector. Suppose that g is a
differentiable function such that g(X,,) is defined, then

Valg(X,) = g(1) 3 (Dy(u)" 2 (1)

as m — oo, where the column vector Dgy(u) is the gradient of g evaluated
at p.

Note.
— When k£ =1, becomes

Valg(X,) = g(1) 3 ¢'(1)Z

as n — 0o. In such case, Delta method can be proved using Slutsky’s
theorem, Fact [[] and Fact [2]

e Example 4. Suppose that (X1,...,X,,) is a random sample from T'(6,1),
where 6 > 0.

(a) Find T,: an estimator of 6 based on (X1, ..., X,) so that
Va(T, — 0) B N(0,0?)

for some o > 0. Express o as a function of 6.

(b) Based on the estimator T,, in Part (a), find W,,: an estimator of 0
based on (Xi,...,X,,) so that

(W, —6%) B N(0,72)

for some 7 > 0. Express 7 as a function of 6.

Ans. (a) We can take T, = >.» | X;/n, then 0 = V0. (b) W,, = T2,
T =200 = 20%/2.



e Suppose that we would like to construct a confidence interval of g(6) based
on a sample X = (X1,...,X,). Suppose that we can find a function h so
that

h(n, X,g(8)) 2 Dy

as n — oo, where Dy is some distribution that does not depend on 6.
Then an approximate confidence interval of g(f) can be constructed by
treating h(n, X, g(#)) as a pivot with distribution Dg. This approach can
be justified by the following result when Dy has a continuous CDF:

Fact 4 Suppose that { X, }22; is a sequence of random variables and X is

a random variable such that X, B X asn — 0. Suppose that the CDF
of X is continuous on (—o0,00). Then for every interval I C (—o0,00),

lim P(X, €I)=P(X €I

n—oo
The proof of Fact [f] can be established if

lim P(X,, =¢)=0=P(X =¢) (2)

n— oo

for every constant ¢. The reason is that P(X € I) can be computed using
P(X <z) and P(X = ¢) for some ¢, z, and we have

lim P(X, <z)=P(X <=z

n—oo

for every z since X, B X and the CDF of X is continuous everywhere.
To prove , note that

limsup P(X,, =¢) < limsup[P(X, <c¢)— P(X, <c—h)]
n— o0 n—0o0

= P(X<¢)—P(X<c—h)

for every h > 0. Since the CDF of X is continuous at ¢, limj,_,o+ P(X <
¢) — P(X <c¢—h) =0, so limsup,,_,., P(X, =c¢) <0. It is clear that
liminf,, o P(X, = ¢) > 0, so we must have

liminf P(X,, = ¢) = limsup P(X,, = ¢) = 0.

n—oo n—00

e Example 5. In Example |4} construct an approximate (1 — «) confidence
interval of 0 for a € (0, 1).

Sol. Let X =31 |, X;/n. In Example we have for Z ~ N(0,0),
V(X -0 3z

as n — oo. By WLLN, X 5 E(X;) = 0, so

LGt
X Vo

=



which implies that

_ 1 D 1
Vn(X —6 (_) = <)Z~N0,1 as m — 00
( ) Vo 75 (0,1)
by Slutsky’s theorem. That is,
VX —0) p
VX

Let z, /2 be the (1 — a/2) quantile of N(0,1), then P(—z,/2 < N(0,1) <
Za/2) =1 —a, 50

(0,1) as n — oo.

n(X -0
P<_Zo¢/2<\/»(\/)?)<za/2) ~1l—«

for large n. Since

Vi(X - 6)

—Ra/2 < \/f < Za /2
P X_ZQ/Q\/)T( X_’_Za/g\/?
vno Vo)’

an approximate (1 — ) confidence interval of 6 is

— z \/}Z — zZ \/I‘E
X — a/2 e a/2
< N * N > '

Example 6. Write down R scripts to find estimated coverage probability
for the approximate (1 — «) confidence interval of § in Example [5| for
a =0.05, n =100 and 6 € {1,10}. The coverage probability is estimated
by p, where p is obtained by carrying out Steps (a)—(d):

(a) Generate 500 random samples of size n from I'(6,1).

(b) Compute the 500 observed confidence intervals.

(¢) Compute N: the number of observed confidence intervals that con-
tains 6.

(d) Take p = N/500.
Sol. We first write an R function test with two input variables theta and

x, where x is a sample. The function output is 1 if the observed confidence
interval of € contains the input theta and is 0 otherwise.

test <- function(theta, x){
alpha <- 0.05



z <- gnorm(l-alpha/2)

n <- length(x)

x.bar <- mean(x)

d <- z*xsqrt(x.bar)/sqrt(n)

ci.lb <- x.bar - d

ci.ub <- x.bar + d

if ( (ci.lb < theta)&(theta < ci.ub) ) { ans <- 1 } else { ans <- 0 }
return(ans)

3

The R scripts for finding estimated estimated coverage probability when
n =100 and # = 1 is given below:

theta <- 1
n <- 100
set.seed(1)
res <- rep(0, 500) #vector for storing coverage results for the 500 samples
for ( i in 1:500){
x <- rgamma(n, shape = theta, scale =1)
res[i] <- test(theta, x)
}
mean(res) #0.95

The estimated coverage probability when n = 100 and § = 10 can be
obtained by replacing

theta <- 1

with

theta <- 10
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