Central Limit Theorem and approximate confidence intervals

• Convergence in distribution. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of random vectors in \mathbb{R}^k and X is a random vector in \mathbb{R}^k with CDF F_X . If

$$\lim_{n \to \infty} P(X_n \le t) = F_X(t)$$

for every t that is a continuity point of F_X , then we say that X_n converges in distribution to X as $n \to \infty$, denoted by

$$X_n \xrightarrow{\mathcal{D}} X$$
 or $X_n \xrightarrow{\mathcal{D}} D_X$,

where D_X is the distribution of X. We will say that D_X is the limiting distribution of X_n .

• Note. $X_n \xrightarrow{\mathcal{P}} X$ implies that $X_n \xrightarrow{\mathcal{D}} X$ but not vice versa. However, we have the following result:

Fact 1 Suppose that $X_n \xrightarrow{\mathcal{D}} 0$ as $n \to \infty$, then $X_n \xrightarrow{\mathcal{P}} 0$ as $n \to \infty$.

Fact 1 is a special case of Theorem 5.2.2 in the text and the proof can be found thereof.

• The following result is known as Slutsky's theorem.

Theorem. Suppose that $X_n \xrightarrow{\mathcal{D}} X$ and $Y_n \xrightarrow{\mathcal{P}} c$ as $n \to \infty$, where c is a constant. Then

(i)
$$X_n + Y_n \xrightarrow{\mathcal{D}} X + c \text{ as } n \to \infty$$
, and
(ii) $X_n Y_n \xrightarrow{\mathcal{D}} cX$ as $n \to \infty$.

The proof of Slutsky's theorem (Theorem 5.2.5 in the text) is omitted.

• Example 1. Suppose that $X_n \xrightarrow{\mathcal{D}} N(0, \sigma^2)$ as $n \to \infty$, where $\sigma > 0$. Suppose that $\{\sigma_n\}_{n=1}^{\infty}$ is a sequence of positive numbers so that $\lim_{n\to\infty} \sigma_n = \sigma$. Find the limiting distribution of X_n/σ_n as $n \to \infty$.

Sol. Let Z be a random variable such that $Z \sim N(0, \sigma^2)$, then $X_n \xrightarrow{\mathcal{D}} Z$ as $n \to \infty$. Take $Y_n = 1/\sigma_n$ for all n, then $Y_n \xrightarrow{\mathcal{P}} 1/\sigma$ as $n \to \infty$. Apply Slutsky's theorem, we have

$$X_n Y_n \xrightarrow{\mathcal{D}} \sigma^{-1} Z$$

as $n \to \infty$. Since $\sigma^{-1}Z \sim N(0,1)$, N(0,1) is the limiting distribution of $X_n Y_n = X_n / \sigma_n$ as $n \to \infty$.

• The following result is used to establish convergence in probability under a continuous transformation.

Fact 2 Suppose that $X_n \xrightarrow{\mathcal{P}} c$ as $n \to \infty$ and g is continuous at c. Then $g(X_n) \xrightarrow{\mathcal{P}} g(c)$ as $n \to \infty$. Here each one of c and g(c) can be a constant or a vector of constants.

The proof of Fact 2 is based on the definition of convergence in probability.

• Example 2. Suppose that (X_1, \ldots, X_n) is a random sample, both $E(X_1)$ and $Var(X_1)$ are finite, and $Var(X_1) > 0$. Let $\mu = E(X_1)$ and $\sigma^2 = Var(X_1)$. Let $\bar{X}_n = \sum_{i=1}^n X_i/n$ and $\bar{Y}_n = \sum_{i=1}^n X_i^2/n$, then from the WLLN, \bar{X}_n and \bar{Y}_n are consistent estimators of μ and $\sigma^2 + \mu^2$ respectively. Find a consistent estimator of σ .

Ans. $(\bar{Y}_n - \bar{X}_n^2)^{1/2}$.

• Convergence in distribution for the univariate case can be established using convergence of MGFs according to Theorem 3 in [1]. Below is a modified version.

Fact 3 Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables and X is a random variable. Let M_{X_n} and M_X denote the MGFs of X_n and X respectively. If there exists n_0 and $\delta > 0$ such that M_X and M_{X_n} are finite on $(-\delta, \delta)$ for $n \ge n_0$, and

$$\lim_{n \to \infty} M_{X_n}(t) = M_X(t)$$

for $t \in (-\delta, \delta)$, then $X_n \xrightarrow{\mathcal{D}} X$ as $n \to \infty$.

• The following is a multivariate version of Central Limit Theorem (CLT).

Theorem. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of IID random vectors. Let μ be the mean vector of X_1 and Σ be the covariance matrix of X_1 . Suppose that all elements in μ and Σ are finite. Let $\bar{X} = \sum_{i=1}^{n} X_i/n$, then

$$\sqrt{n}(\bar{X}-\mu) \xrightarrow{\mathcal{D}} N(0,\Sigma) \text{ as } n \to \infty.$$

• The following is a univariate version of Central Limit Theorem (CLT).

Theorem. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of IID random variables. Let $\mu = E(X_1)$ and $\sigma^2 = Var(X_1)$. Suppose that both μ and Σ are finite. Let $\bar{X} = \sum_{i=1}^{n} X_i/n$, then

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \xrightarrow{\mathcal{D}} N(0,1) \text{ as } n \to \infty.$$

We can prove the univariate version of CLT using Fact 3 assuming that there exists $\delta > 0$ such that the MGF of X_1 is finite on $(-\delta, \delta)$. • Example 3. Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, \sigma^2)$, where $\mu \in (-\infty, \infty)$ and $\sigma > 0$. Let $\mu_2 = E(X_1^2) = \mu + \sigma^2$ and $Y_i = X_i^2$ for $i = 1, \ldots, n$. Let $\bar{X} = \sum_{i=1}^n X_i/n$ and $\bar{Y} = \sum_{i=1}^n X_i^2/n$. Find the limiting distribution of $(\sqrt{n}(\bar{X} - \mu), \sqrt{n}(\bar{Y} - \mu_2))^T$ as $n \to \infty$. Ans. $N((0, 0)^T, \Sigma)$, where

$$\Sigma = \begin{pmatrix} Var(X_1) & Cov(X_1, Y_1) \\ Cov(X_1, Y_1) & Var(Y_1) \end{pmatrix} = \begin{pmatrix} \sigma^2 & 2\mu\sigma^2 \\ 2\mu\sigma^2 & 4\mu^2\sigma^2 + 2\sigma^4 \end{pmatrix}.$$

• The following result is known as Delta method.

Theorem. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of $k \times 1$ random vectors such that

$$\sqrt{n}(X_n - \mu) \xrightarrow{\mathcal{D}} Z$$

as $n \to \infty$, where Z is a $k \times 1$ random vector. Suppose that g is a differentiable function such that $g(X_n)$ is defined, then

$$\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{\mathcal{D}} (D_g(\mu))^T Z \tag{1}$$

as $n \to \infty$, where the column vector $D_g(\mu)$ is the gradient of g evaluated at μ .

Note.

- When k = 1, (1) becomes

$$\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{\mathcal{D}} g'(\mu)Z$$

as $n \to \infty$. In such case, Delta method can be proved using Slutsky's theorem, Fact 1 and Fact 2.

- Example 4. Suppose that (X_1, \ldots, X_n) is a random sample from $\Gamma(\theta, 1)$, where $\theta > 0$.
 - (a) Find T_n : an estimator of θ based on (X_1, \ldots, X_n) so that

$$\sqrt{n}(T_n - \theta) \xrightarrow{\mathcal{D}} N(0, \sigma^2)$$

for some $\sigma > 0$. Express σ as a function of θ .

(b) Based on the estimator T_n in Part (a), find W_n : an estimator of θ based on (X_1, \ldots, X_n) so that

$$\sqrt{n}(W_n - \theta^2) \xrightarrow{\mathcal{D}} N(0, \tau^2)$$

for some $\tau > 0$. Express τ as a function of θ .

Ans. (a) We can take $T_n = \sum_{i=1}^n X_i/n$, then $\sigma = \sqrt{\theta}$. (b) $W_n = T_n^2$, $\tau = 2\theta\sigma = 2\theta^{3/2}$.

• Suppose that we would like to construct a confidence interval of $g(\theta)$ based on a sample $X = (X_1, \ldots, X_n)$. Suppose that we can find a function h so that

$$h(n, X, g(\theta)) \xrightarrow{\mathcal{D}} D_0$$

as $n \to \infty$, where D_0 is some distribution that does not depend on θ . Then an approximate confidence interval of $g(\theta)$ can be constructed by treating $h(n, X, g(\theta))$ as a pivot with distribution D_0 . This approach can be justified by the following result when D_0 has a continuous CDF:

Fact 4 Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables and X is a random variable such that $X_n \xrightarrow{\mathcal{D}} X$ as $n \to \infty$. Suppose that the CDF of X is continuous on $(-\infty, \infty)$. Then for every interval $I \subset (-\infty, \infty)$,

$$\lim_{n \to \infty} P(X_n \in I) = P(X \in I).$$

The proof of Fact 4 can be established if

$$\lim_{n \to \infty} P(X_n = c) = 0 = P(X = c) \tag{2}$$

for every constant c. The reason is that $P(X \in I)$ can be computed using $P(X \leq x)$ and P(X = c) for some c, x, and we have

$$\lim_{n \to \infty} P(X_n \le x) = P(X \le x)$$

for every x since $X_n \xrightarrow{\mathcal{D}} X$ and the CDF of X is continuous everywhere. To prove (2), note that

$$\limsup_{n \to \infty} P(X_n = c) \leq \limsup_{n \to \infty} [P(X_n \le c) - P(X_n \le c - h)]$$
$$= P(X \le c) - P(X \le c - h)$$

for every h > 0. Since the CDF of X is continuous at c, $\lim_{h\to 0^+} P(X \le c) - P(X \le c - h) = 0$, so $\limsup_{n\to\infty} P(X_n = c) \le 0$. It is clear that $\liminf_{n\to\infty} P(X_n = c) \ge 0$, so we must have

$$\liminf_{n \to \infty} P(X_n = c) = \limsup_{n \to \infty} P(X_n = c) = 0.$$

• Example 5. In Example 4, construct an approximate $(1 - \alpha)$ confidence interval of θ for $\alpha \in (0, 1)$.

Sol. Let $\bar{X} = \sum_{i=1}^{n} X_i/n$. In Example 4, we have for $Z \sim N(0, \theta)$,

$$\sqrt{n}(\bar{X}-\theta) \xrightarrow{\mathcal{D}} Z$$

as $n \to \infty$. By WLLN, $\bar{X} \xrightarrow{\mathcal{P}} E(X_1) = \theta$, so

$$\frac{1}{\sqrt{\bar{X}}} \xrightarrow{\mathcal{P}} \frac{1}{\sqrt{\theta}},$$

which implies that

$$\sqrt{n}(\bar{X}-\theta)\left(\frac{1}{\sqrt{\bar{X}}}\right) \xrightarrow{\mathcal{D}} \left(\frac{1}{\sqrt{\theta}}\right) Z \sim N(0,1) \text{ as } n \to \infty$$

by Slutsky's theorem. That is,

$$\frac{\sqrt{n}(X-\theta)}{\sqrt{\bar{X}}} \xrightarrow{\mathcal{D}} N(0,1) \text{ as } n \to \infty.$$

Let $z_{\alpha/2}$ be the $(1 - \alpha/2)$ quantile of N(0, 1), then $P(-z_{\alpha/2} < N(0, 1) < z_{\alpha/2}) = 1 - \alpha$, so

$$P\left(-z_{\alpha/2} < \frac{\sqrt{n}(\bar{X}-\theta)}{\sqrt{\bar{X}}} < z_{\alpha/2}\right) \approx 1 - \alpha$$

for large n. Since

$$-z_{\alpha/2} < \frac{\sqrt{n}(\bar{X} - \theta)}{\sqrt{\bar{X}}} < z_{\alpha/2}$$
$$\Leftrightarrow \theta \in \left(\bar{X} - \frac{z_{\alpha/2}\sqrt{\bar{X}}}{\sqrt{n}}, \bar{X} + \frac{z_{\alpha/2}\sqrt{\bar{X}}}{\sqrt{n}}\right),$$

an approximate $(1 - \alpha)$ confidence interval of θ is

$$\left(\bar{X} - \frac{z_{\alpha/2}\sqrt{\bar{X}}}{\sqrt{n}}, \bar{X} + \frac{z_{\alpha/2}\sqrt{\bar{X}}}{\sqrt{n}}\right).$$

- Example 6. Write down R scripts to find estimated coverage probability for the approximate $(1 - \alpha)$ confidence interval of θ in Example 5 for $\alpha = 0.05$, n = 100 and $\theta \in \{1, 10\}$. The coverage probability is estimated by \hat{p} , where \hat{p} is obtained by carrying out Steps (a)–(d):
 - (a) Generate 500 random samples of size n from $\Gamma(\theta, 1)$.
 - (b) Compute the 500 observed confidence intervals.
 - (c) Compute N: the number of observed confidence intervals that contains θ .
 - (d) Take $\hat{p} = N/500$.

Sol. We first write an R function test with two input variables theta and \mathbf{x} , where \mathbf{x} is a sample. The function output is 1 if the observed confidence interval of θ contains the input theta and is 0 otherwise.

```
test <- function(theta, x){
  alpha <- 0.05</pre>
```

```
z <- qnorm(1-alpha/2)
n <- length(x)
x.bar <- mean(x)
d <- z*sqrt(x.bar)/sqrt(n)
ci.lb <- x.bar - d
ci.ub <- x.bar + d
if ( (ci.lb < theta)&(theta < ci.ub) ) { ans <- 1 } else { ans <- 0 }
return(ans)
}</pre>
```

The R scripts for finding estimated estimated coverage probability when n = 100 and $\theta = 1$ is given below:

```
theta <- 1
n <- 100
set.seed(1)
res <- rep(0, 500)  #vector for storing coverage results for the 500 samples
for ( i in 1:500){
    x <- rgamma(n, shape = theta, scale =1)
    res[i] <- test(theta, x)
}
mean(res) #0.95</pre>
```

The estimated coverage probability when n=100 and $\theta=10$ can be obtained by replacing

theta <- 1 with theta <- 10

Reference

J. H. Curtiss. A note on the theory of moment generating functions. The Annals of Mathematical Statistics, 13(4):430-433, 1942. https://www.jstor.org/stable/2235846.