Sufficient statistics and factorization theorem

- Suppose that $X = (X_1, \ldots, X_n)$ is a sample and the distribution of (X_1, \ldots, X_n) is determined by a parameter vector θ , where θ is in some space Θ . For a statistic T(X), if the conditional distribution of X given T(X) = t does not depend on θ for all t (in the range of T(X)), then T(X) is called a sufficient statistic for θ . We can think that the data X_1, \ldots, X_n are generated in two steps:
 - Step 1. Generate T(X) according the distribution of T(X).
 - Step 2. Suppose that we obtain T(X) = t from Step 1. Generate $X = (X_1, \ldots, X_n)$ according to the conditional distribution of X given T(X) = t.

T(X) is sufficient for θ means that in Step 2, the way X is generated does not depend on θ as long as T(X) = t is given. Thus we can estimate θ based on T(X) only (instead of based on X) without lossing information.

• Factorization Theorem. Suppose that $X = (X_1, \ldots, X_n)$ is a sample and X has PDF (or PMF) f_{θ} , where $\theta \in \Theta$. For a statistic T(X), T(X) is a sufficient statistic for θ if and only if there exist functions g and h such that

$$f_{\theta}(x) = g(T(x), \theta)h(x) \text{ for all } x \tag{1}$$

for all $\theta \in \Theta$. Note that h does not depend on θ .

1

• Proof of the factorization theorem under some conditions. Here we assume that X is discrete and the set of possible values of X and the set of possible values of T(X) do not depend on θ . Suppose that t is a possible value of T(X) (P(T(X) = t) > 0 for all θ). Let p_t be the conditional PMF of X given T(X) = t and let

$$S_t = \{x : T(x) = t\},\$$

then

$$p_{t}(x) = P(X = x | T(X) = t)$$

$$= \frac{P(X = x \text{ and } T(X) = t)}{P(T(X) = t)}$$

$$= \frac{P(X = x)I_{S_{t}}(x)}{P(T(X) = t)}$$
(2)

for all x.

- Proof of the "only if" direction. Suppose that T(X) is sufficient for θ , then the PMF p_t does not depend on θ . For x that is a possible value of X, take t = T(x) in (2) and we have

$$P(X = x) = p_{T(x)}(x)P(T(X) = T(x)),$$

so (1) holds with $h(x) = p_{T(x)}(x)$ and $g(T(x), \theta) = P(T(X) = T(x))$.

- Proof of the "if" direction. Suppose that (1) holds. Then the conditional PMF of X given T(X) = t at x is

$$p_t(x) = \frac{P(X = x)I_{S_t}(x)}{P(T(X) = t)}$$

$$= \frac{f_{\theta}(x)I_{S_t}(x)}{\sum_{x':x' \in S_t} f_{\theta}(x')}$$

$$= \frac{g(T(x), \theta)h(x)I_{S_t}(x)}{\sum_{x':T(x') = t} g(T(x'), \theta)h(x')}$$

$$= \frac{g(t, \theta)h(x)I_{\{x:T(x) = t\}}(x)}{\sum_{x':T(x') = t} g(t, \theta)h(x')}$$

$$= \frac{h(x)I_{S_t}(x)}{\sum_{x':x' \in S_t} h(x')},$$

which does not depend on θ . Thus T(X) is sufficient for θ .

- Note. Suppose that (X_1, \ldots, X_n) is a random sample and the distribution of X_1 is \mathcal{D} , then we say that (X_1, \ldots, X_n) is a random sample from \mathcal{D} .
- Example 1. Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, 1)$, where $\mu \in (-\infty, \infty)$. Let $\bar{X} = \sum_{i=1}^n X_i/n$. Show that \bar{X} is a sufficient statistic of μ .

Sol. For $\mu \in (-\infty, \infty)$, define the function f_{μ} on \mathbb{R}^n as follows:

$$f_{\mu}(x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-(x_i - \mu)^2/2}$$

for $(x_1, \ldots, x_n) \in \mathbb{R}^n$. Then, f_{μ} is a PDF of (X_1, \ldots, X_n) . Since

$$f_{\mu}(x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-(x_i - \mu)^2/2}$$
$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-(\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2)/2},$$

where $\bar{x} = \sum_{i=1}^{n} x_i / n$. Take $T(x_1, ..., x_n) = \sum_{i=1}^{n} x_i / n$,

$$g(t,\mu) = e^{-n(t-\mu)^2/2}$$

and

$$h(x_1, \dots, x_n) = \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\sum_{i=1}^n (x_i - \bar{x})^2/2},$$

then

$$f_{\mu}(x_1,\ldots,x_n) = g(\bar{x},\mu)h(x_1,\ldots,x_n)$$

= $g(T(x_1,\ldots,x_n),\mu)h(x_1,\ldots,x_n)$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$ for all $\mu \in (-\infty, \infty)$. By the factorization theorem, $\sum_{i=1}^n X_i/n$ is a sufficient statistic of μ .

• Example 2. Suppose that (X_1, \ldots, X_n) is a sample from $N(\mu, \sigma^2)$, where $\mu \in (-\infty, \infty)$ and $\sigma > 0$. Let $\bar{X} = \sum_{i=1}^n X_i/n$ and $S = \sqrt{\sum_{i=1}^n (X_i - \bar{X})^2/(n-1)}$. Show that (\bar{X}, S) is a sufficient statistic of (μ, σ) .

The proof is left as an exercise.

- The data (X_1, \ldots, X_n) in Example 1 can be generated in two steps:
 - Step 1. Generate T from $N(\mu, 1/n)$.
 - Step 2. Suppose that we obtain T = t from Step 1. Generate (X_1, \ldots, X_{n-1}) from $N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma})$, where

$$\boldsymbol{\mu}_t = (t, \dots, t)^T$$

is a $(n-1) \times 1$ column vector and Σ is an $(n-1) \times (n-1)$ matrix whose (i, j)-th element is

$$\Sigma_{i,j} = \begin{cases} 1 - 1/n & \text{if } i = j; \\ -1/n & \text{if } i \neq j. \end{cases}$$
(3)

Take $X_n = nt - (X_1 + \dots + X_{n-1})$ and we have (X_1, \dots, X_n) .

Remarks.

- In Step 2, the conditional distribution of (X_1, \ldots, X_{n-1}) given T = t is $N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma})$ for all $t \in (-\infty, \infty)$.
- Suppose that Y_1, \ldots, Y_n are IID $N(\mu, 1)$ and $\overline{Y} = \sum_{i=1}^n Y_i/n$. Then $N(\mu_t, \Sigma)$ is also the conditional distribution of (Y_1, \ldots, Y_{n-1}) given $\overline{Y} = t$, which can be found by applying Fact 5 in the handout "Multivariate normal distributions" given last semester, which is stated below.

Fact. Suppose that $\mathbf{X} = (X_1, \ldots, X_m)^T$, $\mathbf{Y} = (Y_1, \ldots, Y_n)^T$, and the distribution of $(\mathbf{X}^T, \mathbf{Y}^T)$ is a multivariate normal distribution. Let Y_i^* be the best linear predictor of Y_i based on \mathbf{X} for $i = 1, \ldots, n$, and let $\mathbf{Y}^* = (Y_1^*, \ldots, Y_n^*)^T$, then (i) and (ii) hold.

- (i) $\mathbf{Y} \mathbf{Y}^*$ and \mathbf{X} are independent.
- (ii) Let $B\mathbf{X} + \mathbf{a} = \mathbf{Y}^*$. If the covariance matrix of $(\mathbf{X}^T, \mathbf{Y}^T)$ is invertible, then a conditional PDF of \mathbf{Y} given $\mathbf{X} = \mathbf{x}$ is the continuous PDF of $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu} = B\mathbf{x} + \mathbf{a}$ and $\boldsymbol{\Sigma} = E(\mathbf{Y} - \mathbf{Y}^*)(\mathbf{Y} - \mathbf{Y}^*)^T$.

Here the best linear predictor of Y_i based on $\overline{Y} = \sum_{i=1}^n Y_i/n$ is \overline{Y} for each i and $Cov(Y_i - \overline{Y}, Y_j - \overline{Y})$ is the $\Sigma_{i,j}$ in (3) for each (i, j). The handout "Multivariate normal distributions" is at https://stat.walkup.tw/teaching/math_stat_under/handouts/C03_5_mnormal.pdf

- The joint distribution of $(X_1, \ldots, X_{n-1}, T)$ can be determined by the conditional distribution of of (X_1, \ldots, X_{n-1}) given T = t for all t and the marginal distribution of T. See the handout "Finding a joint PDF using conditional and marginal PDFs" given last semester for more details. The handout is at

https://stat.walkup.tw/teaching/math_stat_under/handouts/condi_extra.pdf

- Generating a random vector X with distribution $N(\mu, \Sigma)$.
 - To generate a random vector X with distribution $N(\mu, \Sigma)$, we can first compute the spectral decomposition of Σ to obtain $\Sigma = PDP^T$, where P is a matrix of eigen vectors of Σ such that $PP^T = I$ and D is a diagonal matrix whose diagonal elements are eigen values of Σ . Then, generate a random vector U from N(0, D) and take $X = \mu + PU$, then $X \sim N(\mu, \Sigma)$.
 - The following R function rmnorm returns a random vector X generated from N(mu, Sig) with input mu and Sig. The spectral decomposition of Sig is computed using the R command eigen(Sig). The P and diag.D computed in the function are P and the vector of diagonal elements of D respectively so that Sig= PDP^T and $PP^T = I$.

• MLE's can be computed based on sufficient statistics.

Fact 1. Suppose that $X = (X_1, ..., X_n)$ is a sample and X has PDF (or PMF) f_{θ} , where $\theta \in \Theta$. Suppose that T(X) is a sufficient statistic for θ . Then the MLE of θ can be computed based on T(X).

The proof of Fact 1 is based on the "only if" part of the factorization theorem.