
Sufficient statistics and factorization theorem

• Suppose that X = (X1, . . . , Xn) is a sample and the distribution of
(X1, . . . , Xn) is determined by a parameter vector θ, where θ is in some
space Θ. For a statistic T (X), if the conditional distribution of X given
T (X) = t does not depend on θ for all t (in the range of T (X)), then T (X)
is called a sufficient statistic for θ. We can think that the data X1, . . . , Xn

are generated in two steps:

– Step 1. Generate T (X) according the distribution of T (X).

– Step 2. Suppose that we obtain T (X) = t from Step 1. Generate
X = (X1, . . ., Xn) according to the conditional distribution of X
given T (X) = t.

T (X) is sufficient for θ means that in Step 2, the way X is generated does
not depend on θ as long as T (X) = t is given. Thus we can estimate θ
based on T (X) only (instead of based on X) without lossing information.

• Factorization Theorem. Suppose that X = (X1, . . . , Xn) is a sample and
X has PDF (or PMF) fθ, where θ ∈ Θ. For a statistic T (X), T (X) is a
sufficient statistic for θ if and only if there exist functions g and h such
that

fθ(x) = g(T (x), θ)h(x) for all x (1)

for all θ ∈ Θ. Note that h does not depend on θ.

• Proof of the factorization theorem under some conditions. Here we assume
that X is discrete and the set of possible values of X and the set of possible
values of T (X) do not depend on θ. Suppose that t is a possible value of
T (X) (P (T (X) = t) > 0 for all θ). Let pt be the conditional PMF of X
given T (X) = t and let

St = {x : T (x) = t},

then

pt(x) = P (X = x|T (X) = t)

=
P (X = x and T (X) = t)

P (T (X) = t)

=
P (X = x)ISt

(x)

P (T (X) = t)
(2)

for all x.

– Proof of the “only if” direction. Suppose that T (X) is sufficient for
θ, then the PMF pt does not depend on θ. For x that is a possible
value of X, take t = T (x) in (2) and we have

P (X = x) = pT (x)(x)P (T (X) = T (x)),

so (1) holds with h(x) = pT (x)(x) and g(T (x), θ) = P (T (X) = T (x)).
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– Proof of the “if” direction. Suppose that (1) holds. Then the condi-
tional PMF of X given T (X) = t at x is

pt(x) =
P (X = x)ISt

(x)

P (T (X) = t)

=
fθ(x)ISt(x)∑
x′:x′∈St

fθ(x′)

=
g(T (x), θ)h(x)ISt

(x)∑
x′:T (x′)=t g(T (x′), θ)h(x′)

=
g(t, θ)h(x)I{x:T (x)=t}(x)∑

x′:T (x′)=t g(t, θ)h(x′)

=
h(x)ISt

(x)∑
x′:x′∈St

h(x′)
,

which does not depend on θ. Thus T (X) is sufficient for θ.

• Note. Suppose that (X1, . . . , Xn) is a random sample and the distribution
of X1 is D, then we say that (X1, . . . , Xn) is a random sample from D.

• Example 1. Suppose that (X1, . . . , Xn) is a random sample from N(µ, 1),
where µ ∈ (−∞,∞). Let X̄ =

∑n
i=1Xi/n. Show that X̄ is a sufficient

statistic of µ.

Sol. For µ ∈ (−∞,∞), define the function fµ on Rn as follows:

fµ(x1, . . . , xn) =

n∏
i=1

1√
2π
e−(xi−µ)2/2

for (x1, . . . , xn) ∈ Rn. Then, fµ is a PDF of (X1, . . . , Xn). Since

fµ(x1, . . . , xn) =

n∏
i=1

1√
2π
e−(xi−µ)2/2

=

(
1√
2π

)n
e−(

∑n
i=1(xi−x̄)2+n(x̄−µ)2)/2,

where x̄ =
∑n
i=1 xi/n. Take T (x1, . . . , xn) =

∑n
i=1 xi/n,

g(t, µ) = e−n(t−µ)2/2

and

h(x1, . . . , xn) =

(
1√
2π

)n
e−

∑n
i=1(xi−x̄)2/2,

then

fµ(x1, . . . , xn) = g(x̄, µ)h(x1, . . . , xn)

= g(T (x1, . . . , xn), µ)h(x1, . . . , xn)
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for all (x1, . . . , xn) ∈ Rn for all µ ∈ (−∞,∞). By the factorization theo-
rem,

∑n
i=1Xi/n is a sufficient statistic of µ.

• Example 2. Suppose that (X1, . . . , Xn) is a sample from N(µ, σ2), where

µ ∈ (−∞,∞) and σ > 0. Let X̄ =
∑n
i=1Xi/n and S =

√∑n
i=1(Xi − X̄)2/(n− 1).

Show that (X̄, S) is a sufficient statistic of (µ, σ).

The proof is left as an exercise.

• The data (X1, . . . , Xn) in Example 1 can be generated in two steps:

– Step 1. Generate T from N(µ, 1/n).

– Step 2. Suppose that we obtain T = t from Step 1. Generate (X1,
. . ., Xn−1) from N(µt,Σ), where

µt = (t, . . . , t)T

is a (n− 1)× 1 column vector and Σ is an (n− 1)× (n− 1) matrix
whose (i, j)-th element is

Σi,j =

{
1− 1/n if i = j;
−1/n if i 6= j.

(3)

Take Xn = nt− (X1 + · · ·+Xn−1) and we have (X1, . . . , Xn).

Remarks.

– In Step 2, the conditional distribution of (X1, . . ., Xn−1) given T = t
is N(µt,Σ) for all t ∈ (−∞,∞).

– Suppose that Y1, . . ., Yn are IID N(µ, 1) and Ȳ =
∑n
i=1 Yi/n. Then

N(µt,Σ) is also the conditional distribution of (Y1, . . ., Yn−1) given
Ȳ = t, which can be found by applying Fact 5 in the handout “Mul-
tivariate normal distributions” given last semester, which is stated
below.

Fact. Suppose that X = (X1, . . . , Xm)T , Y = (Y1, . . . , Yn)T , and
the distribution of (XT ,Y T ) is a multivariate normal distribution.
Let Y ∗i be the best linear predictor of Yi based on X for i = 1, . . ., n,
and let Y ∗ = (Y ∗1 , . . . , Y

∗
n )T , then (i) and (ii) hold.

(i) Y − Y ∗ and X are independent.

(ii) Let BX + a = Y ∗. If the covariance matrix of (XT ,Y T ) is
invertible, then a conditional PDF of Y given X = x is the
continuous PDF of N(µ,Σ) with µ = Bx + a and Σ = E(Y −
Y ∗)(Y − Y ∗)T .

Here the best linear predictor of Yi based on Ȳ =
∑n
i=1 Yi/n is Ȳ for

each i and Cov(Yi − Ȳ , Yj − Ȳ ) is the Σi,j in (3) for each (i, j).

The handout “Multivariate normal distributions” is at
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https://stat.walkup.tw/teaching/math_stat_under/handouts/C03_5_mnormal.pdf

– The joint distribution of (X1, . . ., Xn−1, T ) can be determined by
the conditional distribution of of (X1, . . ., Xn−1) given T = t for all
t and the marginal distribution of T . See the handout “Finding a
joint PDF using conditional and marginal PDFs” given last semester
for more details. The handout is at

https://stat.walkup.tw/teaching/math_stat_under/handouts/condi_extra.pdf

• Generating a random vector X with distribution N(µ,Σ).

– To generate a random vector X with distribution N(µ,Σ), we can
first compute the spectral decomposition of Σ to obtain Σ = PDPT ,
where P is a matrix of eigen vectors of Σ such that PPT = I and
D is a diagonal matrix whose diagonal elements are eigen values
of Σ. Then, generate a random vector U from N(0, D) and take
X = µ+ PU , then X ∼ N(µ,Σ).

– The following R function rmnorm returns a random vector X generated
from N(mu, Sig) with input mu and Sig. The spectral decomposition
of Sig is computed using the R command eigen(Sig). The P and
diag.D computed in the function are P and the vector of diagonal
elements of D respectively so that Sig= PDPT and PPT = I.

rmnorm <- function(mu, Sig){

Sig.eigen <- eigen(Sig)

P <- Sig.eigen$vectors #P: matrix of eigen vectors of Sig

D.diag <- Sig.eigen$values #Sig.eigen$values: vector of eigen values of Sig

#D.diag: a vector of diagonal elements of D

k <- length(mu)

U <- rnorm(k, mean=rep(0, k), sd=sqrt(D.diag)) #U~N(0,D)

X <- mu + P%*%U

return(X)

}

• MLE’s can be computed based on sufficient statistics.

Fact 1. Suppose that X = (X1, . . . , Xn) is a sample and X has PDF (or
PMF) fθ, where θ ∈ Θ. Suppose that T (X) is a sufficient statistic for θ.
Then the MLE of θ can be computed based on T (X).

The proof of Fact 1 is based on the “only if” part of the factorization
theorem.

4


