Sufficient statistics and factorization theorem

e Suppose that X = (Xi,...,X,) is a sample and the distribution of
(X1,...,X,) is determined by a parameter vector 8, where 6 is in some
space O. For a statistic T'(X), if the conditional distribution of X given
T(X) = t does not depend on 6 for all ¢ (in the range of T'(X)), then T(X)
is called a sufficient statistic for 8. We can think that the data Xy,..., X,
are generated in two steps:

— Step 1. Generate T'(X) according the distribution of T'(X).

— Step 2. Suppose that we obtain T(X) = ¢ from Step 1. Generate
X = (X1, ..., X,) according to the conditional distribution of X
given T'(X) = t.

T(X) is sufficient for # means that in Step 2, the way X is generated does
not depend on 6 as long as T'(X) = ¢ is given. Thus we can estimate 6
based on T'(X) only (instead of based on X') without lossing information.

e Factorization Theorem. Suppose that X = (Xy,...,X,,) is a sample and
X has PDF (or PMF) fp, where § € ©. For a statistic T'(X), T'(X) is a
sufficient statistic for @ if and only if there exist functions g and h such
that

fo(x) = g(T(x),0)h(x) for all (1)

for all 8 € ©. Note that h does not depend on 6.

e Proof of the factorization theorem under some conditions. Here we assume
that X is discrete and the set of possible values of X and the set of possible
values of T'(X) do not depend on . Suppose that ¢ is a possible value of
T(X) (P(T(X)=1t) > 0 for all §). Let p; be the conditional PMF of X
given T(X) =t and let

Sy ={z:T(z) =1},

then
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for all x.

— Proof of the “only if” direction. Suppose that T'(X) is sufficient for
0, then the PMF p; does not depend on 6. For x that is a possible
value of X, take t = T'(x) in (2) and we have

P(X = 1) = pr@)(2) P(T(X) = T(z)),
so (1) holds with h(x) = pr(,)(z) and g(T'(x),0) = P(T(X) = T(x)).



— Proof of the “if” direction. Suppose that (1) holds. Then the condi-
tional PMF of X given T(X) =t at x is
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which does not depend on . Thus T(X) is sufficient for 6.

pi(z) =

e Note. Suppose that (X1,...,X,) is a random sample and the distribution
of X; is D, then we say that (Xi,...,X,) is a random sample from D.

e Example 1. Suppose that (Xy, ..., X;,) is a random sample from N (4, 1),
where p € (—00,00). Let X = Y7 | X;/n. Show that X is a sufficient
statistic of p.

Sol. For p1 € (—00,00), define the function f,, on R" as follows:
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for (z1,...,z,) € R". Then, f, is a PDF of (X4,...,X,). Since
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where z = >"1" | z;/n. Take T'(z1,...,2,) = Y i, xi/n,
glt.) = et

and

then

f,u(xlw";xn) = g(:f,u)h(:cl,,:rn)
= g(T(xlr"axn)au)h(mlv"'axn)



for all (z1,...,2,) € R" for all 4 € (—00,00). By the factorization theo-
rem, »_ ., X;/n is a sufficient statistic of p.

e Example 2. Suppose that (X1, ..., X,,) is a sample from N(u, 0?), where

p€ (—oo,00)and o > 0. Let X =>"" | X;/nand S = \/Zle(Xi - X)2/(n—1).
Show that (X, S) is a sufficient statistic of (u, o).

The proof is left as an exercise.
e The data (X1,...,X,) in Example 1 can be generated in two steps:

— Step 1. Generate T from N(u,1/n).

— Step 2. Suppose that we obtain 7' = ¢ from Step 1. Generate (X7,
ooy Xpoq) from N(pu,, ), where

isa (n—1) x 1 column vector and ¥ is an (n — 1) X (n — 1) matrix
whose (i, j)-th element is

[ 1-1/n ifi=gj;
g { —~1/n if i # 7. (3)

Take X, =nt — (X1 + -+ X,—1) and we have (X1,...,X,).
Remarks.

— In Step 2, the conditional distribution of (Xi, ..., X,,—1) given T = ¢
is N(p,, ) for all t € (—o0, 0).

— Suppose that Y7, ..., Y, are IID N(u,1) and Y = > | ¥;/n. Then
N(p,, ) is also the conditional distribution of (Y7, ..., Y,,—1) given
Y =t, which can be found by applying Fact 5 in the handout “Mul-
tivariate normal distributions” given last semester, which is stated

below.

Fact. Suppose that X = (X1,...,X,)T, Y = (Y1,..., V)T, and
the distribution of (X, Y™ is a multivariate normal distribution.
Let Y;* be the best linear predictor of Y; based on X fori=1, ..., n,
and let Y* = (Y{,...,Y.)T then (i) and (i) hold.

(1)) Y =Y and X are independent.

(i) Let BX +a = Y*. If the covariance matriz of (X*,Y7) is
invertible, then a conditional PDF of Y given X = x is the
continuous PDF of N(u,Y) with p = Bx +a and ¥ = E(Y —
Y)Y - YT,

Here the best linear predictor of ¥; based on Y = 31" | ¥;/nis Y for

each ¢ and Cov(Y; —Y,Y; —Y) is the &, ; in (3) for each (3, j).

The handout “Multivariate normal distributions” is at



https://stat.walkup.tw/teaching/math_stat_under/handouts/C03_5_mnormal.pdf

— The joint distribution of (X1, ..., X,—1,T) can be determined by
the conditional distribution of of (X7, ..., X,,—1) given T =t for all
t and the marginal distribution of 7. See the handout “Finding a
joint PDF using conditional and marginal PDFs” given last semester
for more details. The handout is at

https://stat.walkup.tw/teaching/math_stat_under/handouts/condi_extra.pdf
e Generating a random vector X with distribution N (u, X).

— To generate a random vector X with distribution N(u,Y), we can
first compute the spectral decomposition of £ to obtain ¥ = PDPT,
where P is a matrix of eigen vectors of ¥ such that PPT = I and
D is a diagonal matrix whose diagonal elements are eigen values
of ¥. Then, generate a random vector U from N(0,D) and take
X =p+ PU, then X ~ N(u, X).

— The following R function rmnorm returns a random vector X generated
from N (mu, Sig) with input mu and Sig. The spectral decomposition
of Sig is computed using the R command eigen(Sig). The P and
diag.D computed in the function are P and the vector of diagonal
elements of D respectively so that Sig= PDPT and PPT = I.

rmnorm <- function(mu, Sig){
Sig.eigen <- eigen(Sig)
P <- Sig.eigen$vectors #P: matrix of eigen vectors of Sig
D.diag <- Sig.eigen$values #Sig.eigen$values: vector of eigen values of Sig
#D.diag: a vector of diagonal elements of D
k <- length(mu)
U <- rnorm(k, mean=rep(0, k), sd=sqrt(D.diag)) #U~N(0,D)
X <- mu + PYx*%U
return(X)
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e MLE’s can be computed based on sufficient statistics.

Fact 1. Suppose that X = (X4,...,X,) is a sample and X has PDF (or
PMF) fq, where 0 € ©. Suppose that T(X) is a sufficient statistic for 6.
Then the MLE of 6 can be computed based on T(X).

The proof of Fact 1 is based on the “only if” part of the factorization
theorem.



