Multivariate normal distributions (多元常態分布)

• Definition. The distribution of (X_1, \ldots, X_m) is a multivariate normal distribution means that there exist IID N(0, 1) random variables Z_1, \ldots, Z_ℓ such that each X_i is a linear combination of Z_1, \ldots, Z_ℓ plus a constant. That is,

$$X_i = \mu_i + a_{i,1}Z_1 + \dots + a_{i,\ell}Z_\ell, \qquad i = 1, \dots, m$$

where $\mu_i, a_{i,1}, \ldots, a_{i,\ell}$ are constants for $i = 1, \ldots, m$. That is,

$$(X_1, \dots, X_m)^T = (\mu_1, \dots, \mu_m)^T + A(Z_1, \dots, Z_\ell)^T,$$

where A is the $m \times \ell$ matrix whose (i, j)-th element is $a_{i,j}$ for $1 \le i \le m$ and $1 \le j \le \ell$.

- When m = 1, the multivariate normal distribution is a (univariate) normal distribution.
- When m = 2, the multivariate normal distribution is called a bivariate normal distribution (二元常態分布).
- Fact 1 Suppose that the distribution of (X_1, \ldots, X_m) is a multivariate normal distribution. Let $\boldsymbol{\mu} = (E(X_1), \ldots, E(X_m))^T$ and $\boldsymbol{\Sigma}$ be the covariance matrix of (X_1, \ldots, X_m) , and let M_{X_1, \ldots, X_m} be the joint MGF of (X_1, \ldots, X_m) , then

$$M_{X_1,\dots,X_m}(\boldsymbol{t}) = e^{\boldsymbol{\mu}^T \boldsymbol{t} + 0.5 \boldsymbol{t}^T \boldsymbol{\Sigma} \boldsymbol{t}}$$
(1)

for $\boldsymbol{t} = (t_1, \ldots, t_m)^T \in \mathbb{R}^m$. If Σ^{-1} exists, then (X_1, \ldots, X_m) has a joint PDF f, where

$$f(\boldsymbol{x}) = (2\pi)^{-m/2} \, (\det(\Sigma))^{-1/2} e^{-(\boldsymbol{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x}-\boldsymbol{\mu})/2}$$
(2)

for $\boldsymbol{x} = (x_1, \dots, x_m)^T \in \mathbb{R}^m$. Here det (Σ) denotes the determinant of Σ .

- Note that (1) follows from direct calculation and (2) is left as a homework problem.
- From (1), we know that when the distribution of $\mathbf{X} = (X_1, \ldots, X_m)$ is a multivariate normal distribution, then the MGF of the multivariate normal distribution is determined by $\boldsymbol{\mu}$: the mean vector of \mathbf{X} and Σ : the covariance matrix of \mathbf{X} and we denote this multivariate normal distribution by $N(\boldsymbol{\mu}, \Sigma)$.
- Fact 2 Suppose that the distribution of (X_1, \ldots, X_m) is a multivariate normal, A is an $n \times m$ matrix of constants and \boldsymbol{b} is a column vector of n constants. Then the distribution of $A(X_1, \ldots, X_m)^T + \boldsymbol{b}$ is also a multivariate normal distribution.

- Fact 3 Suppose that the distribution of $(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ is multivariate normal. If $Cov(X_i, Y_j) = 0$ for $1 \le i \le m, 1 \le j \le n$, then the two random vectors (X_1, \ldots, X_m) and (Y_1, \ldots, Y_n) are independent.
- Results in Facts 2 and 3 can be verified using the MGF of a multivariate normal distribution given in Fact 1.
- Example 1. Suppose that X_1, \ldots, X_n are IID random variables and $X_1 \sim N(\mu, \sigma^2)$, where $\mu \in (-\infty, \infty)$ and $\sigma > 0$. Show that $\bar{X} = \sum_{i=1}^n X_i/n \sim N(\mu, \sigma^2/n)$.

A sketch of solution. Let $Z_i = (X_i - \mu)/\sigma$ for i = 1, ..., n, then $Z_1, ..., Z_n$ are IID N(0, 1) and the distribution of $(X_1, ..., X_n)$ is a multivariate distribution. By Fact 2, the distribution of \bar{X} is a univariate normal distribution. Let $N(\mu_1, \sigma_1^2)$ be the distribution of \bar{X} , then $\mu_1 = E(\bar{X})$ and $\sigma_1^2 = Var(\bar{X})$. Thus we can obtain the result in this example by calculating $E(\bar{X})$ and $Var(\bar{X})$.

• Example 2. Suppose that

$$\left(\begin{array}{c} X\\ Y\end{array}\right) \sim N\left(\left(\begin{array}{c} 0\\ 0\end{array}\right), \left(\begin{array}{c} 1& 3\\ 3& 25\end{array}\right)\right).$$

Find a constant b such that Y - bX is independent of X.

Sol. Since the distribution of (X, Y) is a bivariate normal distribution, by Fact 2, the distribution of (Y - bX, X) is also a bivariate normal distribution. By Fact 3,

$$Y - bX$$
 is independent of $X \Leftrightarrow Cov(Y - bX, X) = 0$.

Thus we take

$$b = \frac{Cov(Y, X)}{Var(X)} = \frac{3}{1} = 3$$

so that Y - bX and X are independent.

• Best linear predictor for the multivariate case. Suppose that Y, X_1, \ldots, X_k are random variables with finite first and second moments. The best linear predictor of Y based on X_1, \ldots, X_k is $a_0 + b_{1,0}X_1 + \cdots + b_{k,0}X_k$, where

$$(a_0, b_{1,0}, \dots, b_{k,0}) = \underset{a, b_1, \dots, b_k}{\operatorname{arg\,min}} E(Y - (a + b_1 X_1 + \dots + b_k X_k))^2.$$

Let $\boldsymbol{b}_0 = (b_{1,0}, \dots, b_{k,0})^T$, $\boldsymbol{X} = (X_1, \dots, X_k)^T$ and $\Sigma_{\boldsymbol{X}}$ be the covariance matrix of \boldsymbol{X} , then it can be shown that

$$\Sigma_{\boldsymbol{X}}\boldsymbol{b}_0 = (Cov(X_1, Y), \dots, Cov(X_k, Y))^T$$
(3)

$$a_0 = E(Y) - E(\boldsymbol{b}_0^T \boldsymbol{X}) = E(Y) - E(b_{1,0}X_1 + \dots + b_{k,0}X_k).$$
(4)

Note that (3) is equivalent to $Cov(Y - (a_0 + b_{1,0}X_1 + \dots + b_{k,0}X_k), X_i) = 0$ for i = 1, ..., k.

- Best linear predictor of a random vector. Suppose that $(Y_1, \ldots, Y_m)^T$ and \boldsymbol{X} are random vectors. For $j \in \{1, \ldots, m\}$, let \hat{Y}_j be the best linear predictor of Y_j based on \boldsymbol{X} . Then the best linear predictor of $(Y_1, \ldots, Y_m)^T$ is $(\hat{Y}_1, \ldots, \hat{Y}_m)^T$.
- Fact 4 Suppose that $\boldsymbol{X} = (X_1, \dots, X_m)^T$, $\boldsymbol{Y} = (Y_1, \dots, Y_n)^T$, and the distribution of $(\boldsymbol{X}^T, \boldsymbol{Y}^T)$ is a multivariate normal distribution. Let Y_i^* be the best linear predictor of Y_i based on \boldsymbol{X} for $i = 1, \dots, n$, and let $\boldsymbol{Y}^* = (Y_1^*, \dots, Y_n^*)^T$, then (i) and (ii) hold.
 - (i) $\boldsymbol{Y} \boldsymbol{Y}^*$ and \boldsymbol{X} are independent.
 - (ii) Let $BX + a = Y^*$. If the covariance matrix of (X^T, Y^T) is invertible, then a conditional PDF of Y given X = x is the PDF of $N(\mu, \Sigma)$ given in (2) with $\mu = Bx + a$ and $\Sigma = E(Y Y^*)(Y Y^*)^T$.

Note that (i) follows from the fact that the covariance between a component of $\mathbf{Y} - \mathbf{Y}^*$ and a component of \mathbf{X} is zero, and (ii) follows from (i).

• Example 3. Suppose that

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}\right).$$

- (a) Find the best linear predictor of X based on Y and Z.
- (b) Find a version of the conditional PDF of X given (Y, Z).
- (c) Find a version of the conditional PDF of (X, Y) given Z.

A sketch of solution.

(a) Let $a_0 + b_{1,0}Y + b_{2,0}Z$ be the best linear predictor of X based on Y and Z. Solving $Cov(X - (a_0 + b_{1,0}Y + b_{2,0}Z), Y) = 0$ and $Cov(X - (a_0 + b_{1,0}Y + b_{2,0}Z), Z) = 0$ gives $b_{1,0} = -2/3$ and $b_{2,0} = -1/3$, so $a_0 = E(X) - E(b_{1,0}Y + b_{2,0}Z) = 4/3$ and the best linear predictor of X based on Y and Z is (-2/3)Y + (-1/3)Z + (4/3).

and

- (b) A version of the conditional PDF of X given (Y, Z) is $\{f_{\mu(y,z),\Sigma} : (y, z) \in \mathbb{R}^2\}$, where $f_{\mu(y,z),\Sigma}$ is the PDF of $N(\mu, \Sigma)$ given in (2) with $\mu = \mu(y, z) = (-2/3)y + (-1/3)z + (4/3)$ and $\Sigma = E(X ((-2/3)Y + (-1/3)Z + (4/3)))^2 = Var(X + (2/3)Y + (1/3)Z) = 4/3$.
- (c) The best linear predictor of Y based on Z is (-1/2)Z+2 and the best linear predictor of X based on Z is 0, so a version of the conditional PDF of $(X, Y)^T$ given Z is $\{f_{\mu(z),\Sigma} : z \in R\}$, where $f_{\mu(z),\Sigma}$ is the PDF of $N(\boldsymbol{\mu}, \Sigma)$ given in (2) $\boldsymbol{\mu} = \mu(z) = (0, (-1/2)z + 2)^T)$ and

$$\Sigma = E(X, Y - ((-1/2)Z + 2))^T (X, Y - ((-1/2)Z + 2)) = \begin{pmatrix} 2 & -1 \\ -1 & 3/2 \end{pmatrix}.$$