
Multivariate normal distributions (多元常態分布)

• Definition. The distribution of (X1, . . . , Xm) is a multivariate normal
distribution means that there exist IID N(0, 1) random variables Z1, . . .,
Zℓ such that each Xi is a linear combination of Z1, . . ., Zℓ plus a constant.
That is,

Xi = µi + ai,1Z1 + · · ·+ ai,ℓZℓ, i = 1, . . . ,m,

where µi, ai,1, . . . , ai,ℓ are constants for i = 1, . . . ,m. That is,

(X1, . . . , Xm)T = (µ1, . . . , µm)T +A(Z1, . . . , Zℓ)
T ,

where A is the m× ℓ matrix whose (i, j)-th element is ai,j for 1 ≤ i ≤ m
and 1 ≤ j ≤ ℓ.

– When m = 1, the multivariate normal distribution is a (univariate)
normal distribution.

– When m = 2, the multivariate normal distribution is called a bivari-
ate normal distribution (二元常態分布).

• Fact 1 Suppose that the distribution of (X1, . . . , Xm) is a multivariate
normal distribution. Let µ = (E(X1), . . . , E(Xm))T and Σ be the co-
variance matrix of (X1, . . . , Xm), and let MX1,...,Xm be the joint MGF of
(X1, . . . , Xm), then

MX1,...,Xm
(t) = eµ

T t+0.5tTΣt (1)

for t = (t1, . . . , tm)T ∈ Rm. If Σ−1 exists, then (X1, . . . , Xm) has a joint
PDF f , where

f(x) = (2π)
−m/2

(det(Σ))−1/2e−(x−µ)TΣ−1(x−µ)/2 (2)

for x = (x1, . . . , xm)T ∈ Rm. Here det(Σ) denotes the determinant of Σ.

• Note that (1) follows from direct calculation and (2) is left as a homework
problem.

• From (1), we know that when the distribution of X = (X1, . . . , Xm)
is a multivariate normal distribution, then the MGF of the multivari-
ate normal distribution is determined by µ: the mean vector of X and
Σ: the covariance matrix of X and we denote this multivariate normal
distribution by N(µ,Σ).

• Fact 2 Suppose that the distribution of (X1, . . . , Xm) is a multivariate
normal, A is an n × m matrix of constants and b is a column vector
of n constants. Then the distribution of A(X1, . . . , Xm)T + b is also a
multivariate normal distribution.
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• Fact 3 Suppose that the distribution of (X1, . . . , Xm, Y1, . . . , Yn) is mul-
tivariate normal. If Cov(Xi, Yj) = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n, then the
two random vectors (X1, . . ., Xm) and (Y1, . . . , Yn) are independent.

• Results in Facts 2 and 3 can be verified using the MGF of a multivariate
normal distribution given in Fact 1.

• Example 1. Suppose thatX1, . . .,Xn are IID random variables andX1 ∼
N(µ, σ2), where µ ∈ (−∞,∞) and σ > 0. Show that X̄ =

∑n
i=1 Xi/n ∼

N(µ, σ2/n).

A sketch of solution. Let Zi = (Xi − µ)/σ for i = 1, . . ., n, then Z1, . . .,
Zn are IID N(0, 1) and the distribution of (X1, . . . , Xn) is a multivariate
distribution. By Fact 2, the distribution of X̄ is a univariate normal
distribution. Let N(µ1, σ

2
1) be the distribution of X̄, then µ1 = E(X̄)

and σ2
1 = V ar(X̄). Thus we can obtain the result in this example by

calculating E(X̄) and V ar(X̄).

• Example 2. Suppose that(
X
Y

)
∼ N

((
0
0

)
,

(
1 3
3 25

))
.

Find a constant b such that Y − bX is independent of X.

Sol. Since the distribution of (X,Y ) is a bivariate normal distribution,
by Fact 2, the distribution of (Y − bX,X) is also a bivariate normal
distribution. By Fact 3,

Y − bX is independent of X ⇔ Cov(Y − bX,X) = 0.

Thus we take

b =
Cov(Y,X)

V ar(X)
=

3

1
= 3

so that Y − bX and X are independent.

• Best linear predictor for the multivariate case. Suppose that Y , X1, . . .,
Xk are random variables with finite first and second moments. The best
linear predictor of Y based on X1, . . ., Xk is a0 + b1,0X1 + · · ·+ bk,0Xk,
where

(a0, b1,0, . . . , bk,0) = argmin
a,b1,...,bk

E(Y − (a+ b1X1 + · · ·+ bkXk))
2.

Let b0 = (b1,0, . . . , bk,0)
T , X = (X1, . . . , Xk)

T and ΣX be the covariance
matrix of X, then it can be shown that

ΣXb0 = (Cov(X1, Y ), . . . , Cov(Xk, Y ))T (3)
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and

a0 = E(Y )− E(bT0 X) = E(Y )− E(b1,0X1 + · · ·+ bk,0Xk). (4)

Note that (3) is equivalent to Cov(Y −(a0+b1,0X1+· · ·+bk,0Xk), Xi) = 0
for i = 1, . . ., k.

• Best linear predictor of a random vector. Suppose that (Y1, . . . , Ym)T and
X are random vectors. For j ∈ {1, . . . ,m}, let Ŷj be the best linear pre-
dictor of Yj based on X. Then the best linear predictor of (Y1, . . . , Ym)T

is (Ŷ1, . . . , Ŷm)T .

• Fact 4 Suppose that X = (X1, . . . , Xm)T , Y = (Y1, . . . , Yn)
T , and the

distribution of (XT ,Y T ) is a multivariate normal distribution. Let Y ∗
i

be the best linear predictor of Yi based on X for i = 1, . . ., n, and let
Y ∗ = (Y ∗

1 , . . . , Y
∗
n )

T , then (i) and (ii) hold.

(i) Y − Y ∗ and X are independent.

(ii) Let BX + a = Y ∗. If the covariance matrix of (XT ,Y T ) is in-
vertible, then a conditional PDF of Y given X = x is the PDF of
N(µ,Σ) given in (2) with µ = Bx + a and Σ = E(Y − Y ∗)(Y −
Y ∗)T .

Note that (i) follows from the fact that the covariance between a com-
ponent of Y − Y ∗ and a component of X is zero, and (ii) follows from
(i).

• Example 3. Suppose that X
Y
Z

 ∼ N

 0
1
2

 ,

 2 −1 0
−1 2 −1
0 −1 2

 .

(a) Find the best linear predictor of X based on Y and Z.

(b) Find a version of the conditional PDF of X given (Y,Z).

(c) Find a version of the conditional PDF of (X,Y ) given Z.

A sketch of solution.

(a) Let a0 + b1,0Y + b2,0Z be the best linear predictor of X based on Y
and Z. Solving Cov(X − (a0 + b1,0Y + b2,0Z), Y ) = 0 and Cov(X −
(a0 + b1,0Y + b2,0Z), Z) = 0 gives b1,0 = −2/3 and b2,0 = −1/3, so
a0 = E(X) − E(b1,0Y + b2,0Z) = 4/3 and the best linear predictor
of X based on Y and Z is (−2/3)Y + (−1/3)Z + (4/3).

3



(b) A version of the conditional PDF of X given (Y,Z) is {fµ(y,z),Σ :
(y, z) ∈ R2}, where fµ(y,z),Σ is the PDF of N(µ,Σ) given in (2) with
µ = µ(y, z) = (−2/3)y+(−1/3)z+(4/3) and Σ = E(X−((−2/3)Y +
(−1/3)Z + (4/3)))2 = V ar(X + (2/3)Y + (1/3)Z) = 4/3.

(c) The best linear predictor of Y based on Z is (−1/2)Z+2 and the best
linear predictor of X based on Z is 0, so a version of the conditional
PDF of (X,Y )T given Z is {fµ(z),Σ : z ∈ R}, where fµ(z),Σ is the
PDF of N(µ,Σ) given in (2) µ = µ(z) = (0, (−1/2)z + 2)T ) and

Σ = E(X,Y−((−1/2)Z+2))T (X,Y−((−1/2)Z+2)) =

(
2 −1
−1 3/2

)
.
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