Some special distributions

• For a specific univariate distribution, we often characterize it using its PMF/PDF/MGF and find the mean and variance of the distribution. The Chebyshev's inequality gives us an approximate range of a random variable X based on $\mu = E(X)$ and $\sigma^2 = Var(X)$:

$$P(X \in (\mu - k\sigma, \mu + k\sigma)) \ge 1 - \frac{1}{k^2}$$

for k > 0.

- Bernoulli trial. A Bernoulli trial is an experiment of two possible outcomes: success and failure, denoted by 1 and 0 respectively. P(outcome = 1) is called the success probability.
- Binomial distribution (二項分布) b(n,p). Suppose that we have results of *n* independent Bernulli trials with success probability *p*. Let *X* be the number of successes in the *n* trials. Then the distribution of *X* is the binomial distribution with size *n* and success probability *p*, denoted by b(n,p). The PMF of *X* is p_X , where

$$p_X(x) = C_x^n p^x (1-p)^{n-x}$$

for $x \in \{0, 1, \dots, n\}$.

- The binomial distribution b(1, p) is also called the Bernoulli distribution with success probability p.
- Notation. For a distribution \mathcal{D} , $P(\mathcal{D} \in A)$ means $P(X \in A)$, where $X \sim \mathcal{D}$. For example,
 - $P(N(0,1) \le x)$ means $P(Z \le x)$, where $Z \sim N(0,1)$.
 - P(b(10, 0.5) = x) means P(X = x), where $X \sim b(10, 0.5)$.
- Example 1. Find the mean and variance of b(n, p) by finding its MGF. A sketch of solution. Let $M_{n,p}$ be the MGF of b(n, p), then $M_{n,p}$ is the MGF for a random variable X such that $X \sim b(n, p)$, so for $t \in (-\infty, \infty)$,

$$M_{n,p}(t) = \sum_{x=0}^{n} e^{tx} P(b(n,p) = x)$$

= $(1 - p + pe^{t})^{n}$.

Compute $M'_{n,p}(t)$ and $M''_{n,p}(t)$, then we have $M'_{n,p}(0) = np$ and $M''_{n,p}(0) = n(n-1)p^2 + np$, so the mean of b(n,p) is np and the variance of b(n,p) is $n(n-1)p^2 + np - (np)^2 = np(1-p)$.

- Fact 1 Suppose that X_1, \ldots, X_n are IID and $X_1 \sim b(1, p)$, then $\sum_{i=1}^n X_i \sim b(n, p)$.
- Negative binomial distribution (負二項分布) nb(r,p). Suppose that we continue to run independent Bernulli trials with success probability p until r successes are obtained. Let X be the number of failures before the r-th success. Then the distribution of X is a negative binomial distribution, denoted by nb(r,p).

$$P(nb(r,p) = x) = C_x^{x+r-1}(1-p)^x p^r$$

for $x \in \{0, 1, \ldots\}$.

- When r = 1, nb(1, p) is called a geometric distribution.
- Multinomial distribution. Suppose that X is a random variable that takes values in $\{1, \ldots, k\}$ and $P(X = j) = p_j$ for $j = 1, \ldots, k$. Suppose that X_1, \ldots, X_n are IID and $X_1 \sim X$. Let

$$N_j = \sum_{i=1}^n I(X_i = j)$$

for $j = 1, \ldots, k$, where

$$I(X_i = j) = \begin{cases} 1 & \text{if } X_i = j; \\ 0 & \text{if } X_i \neq j, \end{cases}$$

then the distribution of (N_1, \ldots, N_k) is called a multinomial distribution of size n and probability vector (p_1, \ldots, p_k) .

$$P((N_1, \dots, N_k) = (x_1, \dots, x_k)) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

for $x_1, ..., x_k \in \{0, ..., n\}$ and $\sum_{j=1}^n x_k = n$.

• Hypergeometric distribution (超幾何分布) H(N, S, n). Suppose that we have a group of N items, of which S items are good and N - S items are defective. Choose a sample of n items from the group and let X be the number of good items in the sample. Then the distribution of X, is a hypergeometric distribution, denoted by H(N, S, n).

$$P(H(N,S,n) = x) = \frac{C_x^S C_{n-x}^{N-S}}{C_n^N}$$

if $x \in \{0, 1, ..., n\}, x \le S$ and $n - x \le N - S$.

• Poisson distribution $Poisson(\mu)$. For a constant $\mu > 0$, the Poisson distribution with mean μ , denoted by $Poisson(\mu)$, is the distribution with PMF p_{μ} , where

$$p_{\mu}(x) = \frac{e^{-\mu}\mu^x}{x!}$$
 for $x \in \{0, 1, \ldots\}$

- From the solution to Problem 30, the mean of $Poisson(\lambda)$ is λ .
- The MGF of $Poisson(\lambda)$ and the second moment of $Poisson(\lambda)$ can be also found in the solution to Problem 30.
- $Poisson(\mu)$ is the limit of $b(n, \mu/n)$ as $n \to \infty$ in the sense that

$$\lim_{n \to \infty} P(b(n, \mu/n) = x) = \frac{e^{-\mu}\mu^x}{x!} = P(Poisson(\mu) = x)$$

for $x \in \{0, 1, ...\}$.

- The MGF of $Poisson(\lambda)$ can be found in the solution to Problem 30. From the solution to Problem 30, we also have the first moment and second moment of $Poisson(\lambda)$ are λ and $\lambda + \lambda^2$ respectively, so the mean and variance of $Poisson(\lambda)$ are both equal to λ .
- Poisson processes. Suppose that for $t \ge 0$, N(t) denotes the number of times that certain event occured in the time interval [0, t] and N(0) = 0. $\{N(t)\}_{t\ge 0}$ is called a Poisson process with rate parameter λ ($\lambda > 0$) if the statements in (a) and (b) hold.
 - (a) For $t \ge 0$ and h > 0, $N(t+h) N(t) \sim Possion(\lambda h)$.
 - (b) For $t_1, t_2 \ge 0$ and $h_1, h_2 > 0$, if $(t_1, t_1 + h_1) \cap (t_2, t_2 + h_2)$ is an empty set, then $N(t_1 + h_1) N(t_1)$ and $N(t_2 + h_2) N(t_2)$ are independent.
- Fact 2 Suppose that $\{N(t)\}_{t\geq 0}$ is a Poisson process with rate parameter λ . Let W_k be the time for the k-th occurrence of the process event for $k = 1, 2, \ldots$ Then the interarrival times $W_1, W_2 W_1, W_3 W_2, \ldots$ are IID and

$$P(W_1 \le t) = \begin{cases} 1 - P(N(t) = 0) = 1 - e^{-\lambda t} & \text{if } t > 0; \\ 0 & \text{if } t \le 0. \end{cases}$$
(1)

• The distribution of W_1 in (1) is called the exponential distribution with mean $1/\lambda$. A PDF of the exponential distribution with mean $1/\lambda$ is f, where

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0; \\ 0 & \text{if } x \le 0. \end{cases}$$

• Gamma distribution $\Gamma(\alpha, 1)$. Suppose that $\alpha > 0$. Define

$$f(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} I_{(0,\infty)}(x)$$

for $x \in R$, where

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx.$$

Then the distribution with PDF f is called the gamma distribution with shape parameter α and scale parameter 1, denoted by $\Gamma(\alpha, 1)$ in the textbook.

- $\Gamma(1,1)$ is the exponential distribution with mean 1.
- Suppose that $X \sim \Gamma(\alpha, 1)$, then the distribution of βX is also a gamma distribution.
- Fact 3 Suppose that T_1, \ldots, T_k are IID random variables and the distribution of T_1 is the exponential distirbution with mean $1/\lambda$. Then the distribution of $\lambda \sum_{i=1}^{k} T_i$ is the gamma distribution $\Gamma(k, 1)$.
- Definition. For r > 0, The chi-square distribution with degrees of freedom r, denoted by $\chi^2(r)$, is the distribution of 2X, where $X \sim \Gamma(r/2, 1)$. When r is a positive integer, let Z_1, \ldots, Z_r be IID random variables such that $Z_1 \sim N(0, 1)$, then $\sum_{i=1}^r Z_i^2 \sim \chi^2(r)$.
- Definition. Suppose that a > 0, b > 0, $X_1 \sim \Gamma(a, 1)$, $X_2 \sim \Gamma(b, 1)$ and X_1 and X_2 are independent. Then the distribution of $X_1/(X_1 + X_2)$ is the beta (β) distribution with PDF f, where

$$f(x) = \begin{cases} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} & \text{if } x \in (0,1); \\ 0 & \text{if } x \notin (0,1), \end{cases}$$

• Definition. Suppose that r > 0, $Z \sim N(0,1)$, $V \sim \chi^2(r)$ and Z and V are independent. Then the distribution of

$$\frac{Z}{\sqrt{(V/r)}}$$

is the t distribution with r degrees of freedom, denoted by t(r).

• Definition. Suppose that d > 0, r > 0, $U \sim \chi^2(d)$, $V \sim \chi^2(r)$ and U and V are independent. Then the distribution of

$$\frac{(U/d)}{(V/r)}$$

is the F distribution with degrees of freedom d and r, denoted by F(d, r).