Independence of two random vectors

• Definition. Suppose that $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$ are random vectors. X and Y are independent means

$$P(X \in A_1 \text{ and } Y \in A_2) = P(X \in A_1)P(Y \in A_2)$$

for all $A_1 \subset \mathbb{R}^m$ and $A_2 \subset \mathbb{R}^n$.

- Note. Suppose that X and Y are random vectors and X and Y are independent. Then u(X) and v(Y) are independent for all functions u and v.
- CDF case.

Fact 1 Suppose that $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_m)$ are random vectors. X and Y are independent if and only if

$$F_{X_1,\dots,X_m,Y_1,\dots,Y_n}(x_1,\dots,x_m,y_1,\dots,y_n) = F_{X_1,\dots,X_m}(x_1,\dots,x_m)F_{Y_1,\dots,Y_n}(y_1,\dots,y_n)$$
for all $(x_1,\dots,x_m) \in \mathbb{R}^m$, $(y_1,\dots,y_n) \in \mathbb{R}^n$.

• PDF case.

Fact 2 Suppose that $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$ are random vectors and (X, Y) has a joint PDF. Suppose that X and Y have PDFs f_X and f_Y respectively. Define

$$g(x_1, \ldots, x_m, y_1, \ldots, y_n) = f_X(x_1, \ldots, x_m) f_Y(y_1, \ldots, y_n)$$

for $(x_1, \ldots, x_m) \in \mathbb{R}^m$ and $(y_1, \ldots, y_n) \in \mathbb{R}^n$, Then g can be a PDF of (X, Y) if and only if X and Y are independent.

• PMF case.

Fact 3 Suppose that $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$ are discrete random vectors and (X, Y) has a joint PMF $p_{X,Y}$. Let p_X and p_Y be the PMFs of X and Y respectively. Then X and Y are independent if and only if

$$p_{X,Y}(x_1, \dots, x_m, y_1, \dots, y_n) = p_X(x_1, \dots, x_m) p_Y(y_1, \dots, y_n)$$

for $(x_1, \dots, x_m) \in \mathbb{R}^m$ and $(y_1, \dots, y_n) \in \mathbb{R}^n$.

• General case.

Fact 4 Suppose that $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$ are random vectors. X and Y are independent if and only if $\langle a, X \rangle$ and $\langle b, Y \rangle$ are independent for all $a \in \mathbb{R}^m$, $b \in \mathbb{R}^n$.

For $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$, the notation $\langle x, y \rangle$ means $\sum_{i=1}^n x_i y_i$, the inner product of x and y.

• MGF case.

Fact 5 Suppose that $X=(X_1,\ldots,X_m)$ and $Y=(Y_1,\ldots,Y_n)$ are random vectors with joint MGF $M_{X,Y}$ and $M_{X,Y}(s_1,\ldots,s_m,t_1,\ldots,t_n)<\infty$ for (s_1,\ldots,s_m) and (t_1,\ldots,t_n) such that $\max\{|s_1|,\ldots,|s_m|,|t_1|,\ldots,|t_n|\}<\delta$ for some $\delta>0$. Then X and Y are independent if and only if

$$M_{X,Y}(s_1, \ldots, s_m, t_1, \ldots, t_n) = M_X(s_1, \ldots, s_m) M_Y(t_1, \ldots, t_n)$$

for (s_1, \ldots, s_m) and (t_1, \ldots, t_n) such that $\max\{|s_1|, \ldots, |s_m|, |t_1|, \ldots, |t_n|\} < \delta$, where M_X and M_Y are the MGFs of X and Y respectively.

Note that

$$M_X(s_1,...,s_m) = M_{X,Y}(s_1,...,s_m,0,...,0)$$

for $(s_1, \ldots, s_m) \in \mathbb{R}^m$ and

$$M_Y(t_1,...,t_n) = M_{X,Y}(0,...,0,t_1,...,t_n)$$

for $(t_1,\ldots,t_n)\in R^n$.

• Example 1. Suppose that X_1 , X_2 , X_3 are independent random variables and the distribution of each X_i is $N(\mu, \sigma^2)$, where μ and σ are constants and $\sigma > 0$. Let $\bar{X} = (X_1 + X_2 + X_3)/3$ and $Y = (X_1 - \bar{X}, X_2 - \bar{X}, X_3 - \bar{X})^T$. Show that \bar{X} and Y are independent.

Sol. We will first find the joint MGF of \bar{X} and Y. From Example 4(a) in the handout "Independent random variables",

$$E(e^{wX_1}) = e^{\mu w + 0.5\sigma^2 w^2}$$

for $w \in R$. Let $M(w) = E(e^{wX_1})$ for $w \in R$. For $s \in R$ and $t = (t_1, t_2, t_3)^T \in R^3$,

$$E(e^{s\bar{X}+t^TY}) = E \exp\left(s\bar{X} + \sum_{i=1}^{3} t_i(X_i - \bar{X})\right)$$

$$= E \exp\left(\sum_{i=1}^{3} t_i X_i + (s - (t_1 + t_2 + t_3))\bar{X}\right)$$

$$= Ee^{a_1 X_1 + a_2 X_2 + a_3 X_3},$$

where $a_i = t_i + (s - (t_1 + t_2 + t_3))/3$ for i = 1,2,3. Since X_1, X_2, X_3 are independent and have the same distribution $N(\mu, \sigma^2)$, we have

$$E(e^{s\bar{X}+t^TY}) = M(a_1)M(a_2)M(a_3)$$

$$= \prod_{i=1}^{3} M(t_i + (s - (t_1 + t_2 + t_3))/3)$$

$$= \exp\left(\sum_{i=1}^{3} \left[\mu \left(t_i + \frac{s - 3\bar{t}}{3}\right) + 0.5\sigma^2 \left(t_i + \frac{s - 3\bar{t}}{3}\right)^2 \right] \right),$$

where $\bar{t} = (t_1 + t_2 + t_3)/3$. It can be shown that

$$\sum_{i=1}^{3} \left[\mu \left(t_i + \frac{s - 3\bar{t}}{3} \right) + 0.5\sigma^2 \left(t_i + \frac{s - 3\bar{t}}{3} \right)^2 \right]$$

$$= \mu \cdot s + \frac{\sigma^2 s^2}{6} + 0.5\sigma^2 \sum_{i=1}^{3} (t_i - \bar{t})^2, \tag{1}$$

where $\bar{t} = (t_1 + t_2 + t_3)/3$. Therefore, for $s \in R$ and $t = (t_1, t_2, t_3)^T \in R^3$,

$$E(e^{s\bar{X}+t^TY}) = M_1(s)M_2(t),$$

where

$$M_1(s) = \exp\left(\mu \cdot s + \frac{\sigma^2 s^2}{6}\right)$$

and

$$M_2(t) = \exp\left(0.5\sigma^2 \sum_{i=1}^3 (t_i - \bar{t})^2\right)$$
$$= \exp\left(0.5\sigma^2 \sum_{i=1}^3 (t_i - (t_1 + t_2 + t_3)/3)^2\right).$$

It is clear that

$$E(e^{s\bar{X}+t^TY})\Big|_{t=(0,0,0)^T} = M_1(s)$$

and

$$E(e^{s\bar{X}+t^TY})\Big|_{s=0} = M_2(t),$$

so

$$E(e^{s\bar{X}+t^TY}) = \left(\left.E(e^{s\bar{X}+t^TY})\right|_{t=(0,0,0)^T}\right)\left(\left.E(e^{s\bar{X}+t^TY})\right|_{s=0}\right)$$

for $s \in R$, $t \in R^3$, which implies that \bar{X} and Y are independent.

- IID= Indepenent and Identically Distributed (獨立同分布). Suppose that random variables X_1, \ldots, X_n are indepenent and identically distributed, then we say that X_1, \ldots, X_n are IID.
 - In Example 1, X_1 , X_2 , X_3 are IID.