Expectation of g(X, Y)

- Suppose that (X, Y) is a vector of two random variables defined on the same sample space.
 - If X, Y are both discrete, then

$$E(g(X,Y)) = \sum_{(x,y): p_{X,Y}(x,y) > 0} g(x,y) p_{X,Y}(x,y).$$
(1)

- If (X, Y) has joint PDF $f_{X,Y}$, then

$$E(g(X,Y)) = \int_{R^2} g(x,y) f_{X,Y}(x,y) d(x,y).$$
 (2)

• Fact 1 Suppose that (X, Y) is a vector of two random variables such that E(X) and E(Y) are finite. Then

$$E(X+Y) = E(X) + E(Y).$$

The proof of Fact 1 is based on (1) for the case where X and Y are both discrete, and the proof is based on (2) for the case where (X, Y) has joint PDF $f_{X,Y}$.

• Example 1. Suppose that (X, Y) has joint PDF $f_{X,Y}$, where

$$f_{X,Y}(x,y) = \begin{cases} e^{-x}e^{-y} & \text{if } x > 0 \text{ and } y > 0; \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find a PDF of X.
- (b) Find E(X) using (2) and compare the result with $\int_{-\infty}^{\infty} x f_X(x) dx$, where f_X is the PDF of X from Part (a).
- (c) Find E(XY).
- (d) Find E(X + XY).

Ans. (a) Let $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = e^{-x} I_{(0,\infty)}(x)$ for $x \in R$. Then f_X is a PDF of X. (b) Both $\int_{R^2} x f_{X,Y}(x,y) d(x,y)$ and $\int_{-\infty}^{\infty} x f_X(x) dx$ are equal to 1. (c) 1. (d) 2.

• Joint MGF (moment generating function). Suppose that (X, Y) is a vector of random variables such that $E(e^{t_1X+t_2Y}) < \infty$ for $|t_1| < h_1$ and $|t_2| < h_2$ for some positive numbers h_1 and h_2 . Let

$$M_{X,Y}(t_1, t_2) = E(e^{t_1 X + t_2 Y})$$

for $(t_1, t_2) \in (-h_1, h_1) \times (-h_2, h_2)$, then $M_{X,Y}$ is called the joint MGF of (X, Y).

• Suppose that the MGF of (X, Y) is finite on $(-h_1, h_1) \times (-h_2, h_2)$ for some positive numbers h_1 and h_2 . Let M_X , M_Y and $M_{X,Y}$ denote the MGF of X, Y and (X, Y) respectively. Then

$$M_X(t_1) = M_{X,Y}(t_1, 0)$$
 for $t_1 \in (-h_1, h_1)$

and

$$M_Y(t_2) = M_{X,Y}(0, t_2)$$
 for $t_2 \in (-h_2, h_2)$

Moreover, for nonnegative integers m, n, we have

$$E(X^m Y^n) = \left. \frac{\partial^{m+n}}{\partial t_1^m \partial t_2^n} M_{X,Y}(t_1, t_2) \right|_{(t_1, t_2) = (0, 0)}$$

- Example 2. Consider the (X, Y) in Example 1.
 - (a) Find the MGF of (X, Y).
 - (b) Find the MGF of X.
 - (c) Find E(XY) and E(X) using the MGF of (X, Y) and the MGF of X.

Ans. (a) $M_{X,Y}(t_1, t_2) = 1/((1 - t_1)(1 - t_2))$ for $t_1 < 1, t_2 < 1$. (b) $M_X(t) = 1/(1 - t)$ for t < 1.

- Fact 2 Suppose that (X, Y) and (U, V) are two random vectors such that for some positive numbers h_1 and h_2 , the MGF of (X, Y) and the MGF of (U, V) are equal and finite on $(-h_1, h_1) \times (-h_2, h_2)$, then (X, Y) and (U, V) have the same distribution.
- Example 3. Consider the (X, Y) in Example 1. Show that (X, Y) and (Y, X) have the same distribution.
- Example 4. Consider the (X, Y) in Example 1. Find the MGF of X+2Y. Sol. Let $M_{X,Y}(t_1, t_2) = 1/((1-t_1)(1-t_2))$ for $t_1 < 1$, $t_2 < 1$, then $M_{X,Y}$ is the MGF of (X, Y) (based on the result of Example 2). For t < 1/2,

$$Ee^{t(X+2Y)} = Ee^{t_1X+t_2Y}|_{(t_1,t_2)=(t,2t)}$$

= $M_{X,Y}(t,2t)$
= $1/((1-t)(1-2t)).$

Let M(t) = 1/((1-t)(1-2t)) for t < 1/2, then M is the MGF of X + 2Y.

• Notation. Suppose that $(X, Y)^T$ is a random vector (column vector). Then $E((X, Y)^T) = (E(X), E(Y))^T$.