
Quantile and expectation

• Let 0 < p < 1. The quantile of order p of the distribution of a random
variable X is a number ξp such that

P (X < ξp) ≤ p

and
P (X ≤ ξp) ≥ p.

• Suppose that a random variable X has CDF FX and for p ∈ (0, 1), there
exists a x0 such that

FX(x0) = p,

then x0 is a quantile of order p.

• Note that a quantile of order p of a distribution is not always unique.

Example 1. Suppose that X has a PDF fX , where

fX(x) =

{
1/2 if 0 ≤ x < 1 or 2 ≤ x < 3;
0 otherwise.

Then

P (X ≤ x) =


0 if x < 0;
x/2 if 0 ≤ x < 1;
1/2 if 1 ≤ x < 2;
1/2 + (x− 2)/2 if 2 ≤ x < 3;
1 if x ≥ 3.

and any number between 1 and 2 can be the quantile of order 0.5 of the
distribution of X.

• Suppose that a random variable X has CDF FX and for p ∈ (0, 1), there
exists a unique x0 such that FX(x0) = p, then F−1

X (p) = x0 and F−1
X is

also called the quantile function of X.

– The value of the quantile function at p is the quantile of order p.

– F−1
X (0.5) is the median of the distribution of X.

– F−1
X (0.75)− F−1

X (0.25) is the interquartile range of (the distribution
of ) X. “Interquartile range” is often abbreviated as “IQR”.

• Example 2. Suppose that X has a PDF fX , where

fX(x) =

{
1− |x| if |x| < 1;
0 otherwise.

Find the median and the interquartile range of the distribution of X.
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Sol. Let F be the CDF of X, then

F (t) =

∫ t

−∞
fX(x)dx =


0 if t ≤ −1;
(1 + t)2/2 if − 1 < t ≤ 0;
(1/2) + t− (t2/2) if 0 < t ≤ 1;
1 if t > 1.

To find the median, we need to solve F (t) = 0.5 for t. Since F is a piecewise
polynomial that is strictly increasing on (−1, 1), we first compute the F
value at the joint point 0 to determine which piece should be used to solve
F (t) = 0.5. Direct calculation gives F (0) = 0.5, so 0 is the median.

Solving F (t) = 0.75 gives

(1/2) + t− (t2/2) = 0.75

and t ∈ (0, 1), which gives t = 1− 1/
√
2. Solving F (t) = 0.25 gives

(1 + t)2/2 = 0.25

and t ∈ (−1, 0], which gives t = −1 + 1/
√
2. The interquartile range is

1− 1/
√
2− (−1 + 1/

√
2) = 2−

√
2.

• The expectation of a random variable X, denoted by E(X), is the “long
term average” of X. Suppose that X1, X2, . . . are independent random
variables such that Xi has the same distribution of X, then

E(X) = lim
n→∞

X1 + · · ·+Xn

n
.

– It is not always possible to define E(X). However, E(|X|) can always
be defined, and E(|X|) is either ∞ or a finite value. When E(|X|) <
∞, E(X) can be defined and is a finite value.

– For the computation of E(X). We will focus on the cases where X
is discrete or X has a PDF.

• Suppose that X is discrete with PMF pX . Then

E(X) =
∑
x

xP (X = x) =
∑
x

xpX(x),

where the sum is over all possible values of X. Here we require that∑
x |x|pX(x) is finite so that the sum remains the same when the terms

are re-arranged.

• Example 3. Suppose that X is a discrete random variable with PMF pX ,
where

pX(x) =


0.2 if x = 0;
0.3 if x = 1;
0.5 if x = 2;
0 otherwise.

Find E(X).

Sol. E(X) = 0× 0.2 + 1× 0.3 + 2× 0.5 = 1.3.
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• Example 4. Consider the X in Example 3. Let Y = (X − 1)2. Find
E(Y ).

Sol. The possible values of X are 0, 1, 2, so the set of all possible values
of Y is {(x− 1)2 : x ∈ {0, 1, 2}} = {0, 1}. Since

P (Y = y) = P ((X − 1)2 = y)

=

 P (X = 1) = 0.3 if y = 0;
P (X = 0) + P (X = 2) = 0.2 + 0.5 = 0.7 if y = 1;
0 otherwise,

we have E(Y ) = 0× P (Y = 0) + 1× P (Y = 1) = 0.7.

• When X is a discrete random variable with PMF pX , E(g(X)) can also
be computed as

E(g(X)) =
∑
x

g(x)pX(x), (1)

where the sum is over all possible values of X. Here we require that
E(|g(X)|) =

∑
x |g(x)|pX(x) is finite so that the sum remains the same

when the terms are re-arranged.

• Example 5. In Example 4, E(Y ) = E((X − 1)2) can also be obtained
using

E((X − 1)2) =

2∑
x=0

(x− 1)2pX(x)

= (0− 1)2 × P (X = 0) + (1− 1)2 × P (X = 1) + (2− 1)2 × P (X = 2)

= 1× (P (X = 0) + P (X = 2)) = 0.7.

• When X is discrete with PMF pX and g(X) can take positive or negative
values, one way to check whether E(|g(X)|) < ∞ is to compute E(g(X)) =∑

x:pX(x)>0 g(x)pX(x) using

E(g(X)) =
∑

x:pX(x)>0,g(x)>0

g(x)pX(x)

︸ ︷︷ ︸
I

+
∑

x:pX(x)>0,g(x)<0

g(x)pX(x)

︸ ︷︷ ︸
II

.

– If both I and II are finite, then E(|g(X)|) = I − II < ∞ and
E(g(X)) = I + II.

– If I = ∞ and II is finite, then E(|g(X)|) = ∞ and E(g(X)) = ∞.

– If II = −∞ and I is finite, then E(|g(X)|) = ∞ and E(g(X)) = −∞.

– If I = ∞ and II = −∞, E(|g(X)|) = ∞ and E(g(X)) cannot be
defined.

3



• Example 6. Suppose that X is a discrete random variable with PMF pX ,
where

pX(x) =

{
c
x2 if x is an integer and x ̸= 0;
0 otherwise,

and c = 1/(2
∑∞

k=1 k
−2). Find E(X).

Sol.

E(X) =
∑

x: x is an integer and x ̸= 0

xpX(x)

=

∞∑
x=1

x
( c

x2

)
+

−∞∑
x=−1

x
( c

x2

)
,

where
∞∑
x=1

x
( c

x2

)
= c

∞∑
k=1

1

k
= ∞

and
−∞∑
x=−1

x
( c

x2

)
k=−x
= c

∞∑
k=1

(
−1

k

)
= −∞.

E(X) = ∞+ (−∞) cannot be defined.

• When X has PDF fX ,

E(X) =

∫ ∞

−∞
xfX(x)dx.

Here we require that
∫∞
−∞ |x|fX(x)dx < ∞.

• Example 7. Suppose that X has PDF fX , where

fX(x) =

{
1 if x ∈ (0, 1);
0 otherwise.

Find E(X/(1 +X)).

Sol. Let Y = X/(1 + X), we will find E(Y ) by finding the PDF of Y .
Let SX = {x : fX(x) > 0}, then SX = (0, 1). Let g(x) = x/(1 + x) for
x ∈ (0, 1), then Y = g(X) and g′ > 0 on (0, 1), so Y has a PDF fY given
by

fY (y) =

{
fX(g−1(y))

∣∣∣ d
dy g

−1(y)
∣∣∣ if y ∈ {x/(1 + x) : x ∈ (0, 1)};

0 otherwise.

=

{
fX(y/(1− y))

∣∣∣ d
dy

(
1

1−y − 1
)∣∣∣ if y ∈ (0, 0.5);

0 otherwise.

=

{
1/(1− y)2 if y ∈ (0, 0.5);
0 otherwise.
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E(Y ) =

∫ 0.5

0

y

(
1

(1− y)2

)
dy = 1− ln(2).

• When X is a random variable with PDF fX , E(g(X)) can also be com-
puted as

E(g(X)) =

∫ ∞

−∞
g(x)fX(x)dx. (2)

Here we require that E(|g(X)|) =
∫∞
−∞ |g(x)|fX(x)dx is finite.

• Example 8. In Example 7, E(X/(1 +X)) can also be computed using

E(X/(1 +X)) =

∫ ∞

−∞

(
x

1 + x

)
fX(x)dx

=

∫ 1

0

(
x

1 + x

)
dx

(y = 1 + x) =

∫ 2

1

(y − 1)

y
dy

= 1− ln(2).

• When X is a continuous random variable with PDF fX and g(X) can take
positive or negative values, one way to check whether E(|g(X)|) < ∞ is
to compute E(g(X)) =

∫
g(x)fX(x)dx using

E(g(X)) =

∫
x:g(x)>0

g(x)fX(x)dx︸ ︷︷ ︸
I

+

∫
x:g(x)<0

g(x)fX(x)dx︸ ︷︷ ︸
II

.

– If both I and II are finite, then E(|g(X)|) = I − II < ∞ and
E(g(X)) = I + II.

– If I = ∞ and II is finite, then E(|g(X)|) = ∞ and E(g(X)) = ∞.

– If II = −∞ and I is finite, then E(|g(X)|) = ∞ and E(g(X)) = −∞.

– If I = ∞ and II = −∞, E(|g(X)|) = ∞ and E(g(X)) cannot be
defined.

• Example 9. Suppose that X has PDF fX , where

fX(x) =
1

π(1 + x2)
for x ∈ (−∞,∞).

Find E(X).

Sol.

E(X) =

∫ ∞

−∞
xfX(x)dx

=

∫ ∞

0

xfX(x)dx+

∫ 0

−∞
xfX(x)dx,
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where ∫ ∞

0

xfX(x)dx =

∫ ∞

0

x

(
1

π(1 + x2)

)
dx = ∞

and ∫ 0

−∞
xfX(x)dx =

∫ 0

−∞
x

(
1

π(1 + x2)

)
dx = −∞.

E(X) = ∞+ (−∞) cannot be defined.

• Properties of expectation. Suppose that X and Y are random variables
with the same sample space, and E(|X|) and E(|Y |) are finite. Then
(i)-(iii) hold.

(i) E(X + Y ) = E(X) + E(Y ).

(ii) E(cX) = cE(X) for a constant c.

(iii) E(k) = k for a constant k.

We can verify (i) for the special case where X = h1(Z) and Y = h2(Z)
for some random variable Z, where Z can be a discrete random variable
with PMF pZ or a continuous random variable with PDF fZ . Later we
will be able to prove (i) for the case where (X,Y ) has joint PDF or X, Y
are both discrete.

Example 10. Suppose that X is a random variable with E(X) = 0 and
E(X2) = 1. Find E(X − 2)2.

Sol. E((X−2)2) = E(X2−4X+4) = E(X2)−4E(X)+4 = 1−4·0+4 = 5.

• E(X) is finite if and only if E|X| < ∞. In such case, we say that the
random variable X is integrable.

• Suppose that X is a random variable such that

P (X ∈ [m,M ]) = 1,

where m and M are constants. Then X is integrable and

m ≤ E(X) ≤ M.
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