Quantile and expectation

e Let 0 < p < 1. The quantile of order p of the distribution of a random
variable X is a number £, such that

PX <§)<p

and
P(X < fp) > p.

e Suppose that a random variable X has CDF Fx and for p € (0,1), there
exists a xg such that
Fx(xo) = p,

then x¢ is a quantile of order p.

e Note that a quantile of order p of a distribution is not always unique.

Example 1. Suppose that X has a PDF fx, where

1/2 if0<z<lor2<z<3;
Fx (@) :{ 0 otherwise.
Then
0 if z < 0;
x/2 ifo<z<l;
PX<z)={ 1/2 if1<az<?2;
124+ (x—2)/2 if2<z<3;
1 if x > 3.

and any number between 1 and 2 can be the quantile of order 0.5 of the
distribution of X.

e Suppose that a random variable X has CDF Fx and for p € (0,1), there
exists a unique zo such that Fy(zg) = p, then Fy'(p) = z¢ and Fy' is
also called the quantile function of X.

— The value of the quantile function at p is the quantile of order p.

~ F5'(0.5) is the median of the distribution of X.

~ F'(0.75) — F'(0.25) is the interquartile range of (the distribution
of ) X. “Interquartile range” is often abbreviated as “IQR”.

e Example 2. Suppose that X has a PDF fx, where

_ 1—Jz if|z| <1
fx(@) = { 0 otherwise.

Find the median and the interquartile range of the distribution of X.



Sol. Let F' be the CDF of X, then

0 ift <—1;
. .
- - (1+1)2/2 it —1<t<0;
F(t)—[mfx(x)dx— (1/2)+t—(t2/2) if0<t<1
1 if t > 1.

To find the median, we need to solve F'(t) = 0.5 for t. Since F is a piecewise
polynomial that is strictly increasing on (—1,1), we first compute the F
value at the joint point 0 to determine which piece should be used to solve
F(t) = 0.5. Direct calculation gives F(0) = 0.5, so 0 is the median.

Solving F'(t) = 0.75 gives
(1/2) +t— (t?/2) = 0.75
and t € (0,1), which gives t = 1 — 1/4/2. Solving F(t) = 0.25 gives
(1+t)?%/2=0.25
and t € (—1,0], which gives t = —1 + 1/4/2. The interquartile range is
1—1/V2 = (-14+1/vV2) =22
The expectation of a random variable X, denoted by F(X), is the “long
term average” of X. Suppose that X, X5, ... are independent random
variables such that X; has the same distribution of X, then
X+ + X,
E(X) = lim At An

n—00 n

— Tt is not always possible to define E(X). However, E(|X|) can always
be defined, and E(|X]) is either oo or a finite value. When E(|X]) <
00, E(X) can be defined and is a finite value.

— For the computation of F(X). We will focus on the cases where X
is discrete or X has a PDF.

Suppose that X is discrete with PMF px. Then
E(X)=> azP(X =)= apx(x),

where the sum is over all possible values of X. Here we require that
> . |z[px (x) is finite so that the sum remains the same when the terms
are re-arranged.

Example 3. Suppose that X is a discrete random variable with PMF px,
where

0.2 ifz=0;

0.3 ifz=1;
Px(T) =9 05 ife—2:

0 otherwise.

Find E(X).
Sol. E(X)=0x02+1x03+2x05=13.



e Example 4. Consider the X in Example 3. Let Y = (X — 1)2. Find
E(Y).

Sol. The possible values of X are 0, 1, 2, so the set of all possible values
of YVis {(z —1)?: 2 € {0,1,2}} = {0,1}. Since

P(Y=y) = P(X-1)?*=y)
P(X=1)=03 if y=0;
= P(X=0)+P(X=2)=02+05=07 ify=1;
0 otherwise,

we have E(Y)=0x P(Y =0)+1x P(Y =1) =0.7.

e When X is a discrete random variable with PMF px, E(g(X)) can also
be computed as

E(g(X)) =Y _ g(@)px (), (1)

where the sum is over all possible values of X. Here we require that
E(lg(X)]) = >, l9(x)|px () is finite so that the sum remains the same
when the terms are re-arranged.

e Example 5. In Example 4, E(Y) = E((X — 1)?) can also be obtained
using

2

E(X-1?%) = ) (¢—1)px(z)

x=0
0—1P2xPX=0+1-12*xPX=1)+(2-1?%*xP(X =2)
1x (P(X=0)+P(X =2))=0.7.

e When X is discrete with PMF px and g(X) can take positive or negative
values, one way to check whether E(|g(X)|) < oo is to compute E(g(X)) =

ZIZPX (z)>0 g(x)px (x) using

E(g9(X)) = > g(@)px (z) + > g(@)px ().

z:px (2)>0,9(x)>0 z:px (2)>0,9(z)<0

I 11

— If both I and II are finite, then E(|g(X)|) = I — II < oo and
E(gX)=I+11I.

— If I = oo and I is finite, then E(]g(X)]) = oo and E(g(X)) = oc.

— If IT = —oo and I is finite, then F(|g(X)|) = co and E(g(X)) = —

~If I = 00 and IT = —o0, E(|g(X)]) = oo and E(g(X)) cannot be
defined.

Q.



e Example 6. Suppose that X is a discrete random variable with PMF px,

where
% if z is an integer and x # O;

px(x) = { 0

otherwise,
and ¢ =1/(2> 72, k~?). Find E(X).
Sol.

EX) = Z xpx ()
x: x is an integer and x # 0
- S8 (),

where - -

c 1

Yo(zm) =g =
and
CN\ ez 1
el = (g) =

E(X) = 00 4 (—o0) cannot be defined.
e When X has PDF fx,
EX) = / xfx(x)de.
Here we require that [*°_|z|fx(z)dz < co.
e Example 7. Suppose that X has PDF fx, where

(1 ifxze(0,1)
Fx(@) = { 0 otherwise.
Find E(X/(1 + X)).
Sol. Let Y = X/(1 + X), we will find E(Y) by finding the PDF of Y.
Let Sx = {z : fx(z) > 0}, then Sx = (0,1). Let g(x) = /(1 + z) for
z € (0,1), then Y = g(X) and ¢’ > 0 on (0,1), so Y has a PDF fy given
by

fr(y) = {fx(g‘l@” Lol fyefo/(4a)iae (0]
0

otherwise.

{ Ix(y/(1—vy)) ’% (ﬁ - 1)‘ if y € (0,0.5);
0

otherwise.

_ [ Y(A-y)? ifye(0,05);
o 0 otherwise.



E(Y) = /00'531 ((1—1;,)2> dy =1 —1In(2).

e When X is a random variable with PDF fx, E(g(X)) can also be com-
puted as

B(y(X)) = / () fx (@) &)
Here we require that E(|g(X)|) = [*_|g(2)|fx (z)dx is finite.
e Example 8. In Example 7, E(X /(1 + X)) can also be computed using

dx
1+x>

E(X/(1+ X))

e When X is a continuous random variable with PDF fx and g(X) can take
positive or negative values, one Way to check whether E(|g(X)|) < oo is
to compute F(g = [g(x x)dz using

E(9(X)) = / ( )>Og(w)fx(m)d$+ R

I 11

— If both I and IT are finite, then E(|g(X)|) = I — II < oo and
E(gX)=I+11I.

— If I = oo and I is finite, then E(]g(X)]) = 0o and E(g(X)) = o0
— If IT = —oo and I is finite, then E(]g(X)|) = co and E(g(X)) = —oc.

—If I = 00 and IT = —o0, E(|g(X)]) = oo and E(g(X)) cannot be
defined.

e Example 9. Suppose that X has PDF fx, where

1

fx(x) = m

for z € (—o0,00).

Find B(X).
Sol.

EX) = /Ooxfx(x)d:v

— 00

o) 0
[ ozt [ sl
0 —o0



where

/Oooxfx(x)dx/ooox<7r(1_1i_x2)) e — o
/_OOO rfx(v)dr = /_OOQ T (M) do — —oo.

E(X) = 00+ (—o0) cannot be defined.

and

Properties of expectation. Suppose that X and Y are random variables
with the same sample space, and E(|X|) and E(]Y]) are finite. Then
(i)-(iii) hold.

(i) EX+Y)=EX)+E®Y).

(ii) E(cX) = cE(X) for a constant c.

(i) E(k) = k for a constant k.

We can verify (i) for the special case where X = hqi(Z) and Y = hy(2)
for some random variable Z, where Z can be a discrete random variable
with PMF pz or a continuous random variable with PDF f;. Later we
will be able to prove (i) for the case where (X,Y) has joint PDF or X, Y
are both discrete.

Example 10. Suppose that X is a random variable with E(X) = 0 and
E(X?)=1. Find E(X —2)2.
Sol. BE((X—2)?) = E(X?-4X+4) = E(X?)—4E(X)+4 =1-4-0+4 = 5.

E(X) is finite if and only if E|X| < co. In such case, we say that the
random variable X is integrable.

Suppose that X is a random variable such that
P(X € [m,M]) =1,
where m and M are constants. Then X is integrable and

m < E(X) < M.



