Events and probabilities

- Sample space ($\[mathbb{k}]$ $\[mathbb{k}]$ $\[mathbb{c}]$: the set containing all possible outcomes of a random experiment. We denote a sample space by Ω . In the textbook, a sample space is often denoted by C.
 - Events are represented by subsets of the sample space Ω .
 - We say that an event occurs if the outcome of the random experiment belongs to the event set.
- Example 1. Consider the experiment of rolling a die. The sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$ and the event of getting an even number is $\{2, 4, 6\}$.
- Notation. Suppose that Ω is a sample space and A and B are subsets of Ω .
 - $A \cup B$: the union (職集) of A and B, representing the event that at least one of A, B occurs.
 - $A \cap B$: the intesection (交集) of A and B, representing the event that both A and B occur.
 - A^c : the complement (補 \pounds) of A. $A^c = \{x : x \in \Omega \text{ and } x \notin A\}$, representing the event that A does not occur.
- Disjoint sets (互斥集合).
 - Two sets A and B are disjoint (互斥) if $A \cap B = \emptyset$.
 - Suppose that C is a collection of sets such that any two sets C are disjoint. Then we say that sets in C are disjoint or C is a collection of disjoint sets.
- Given a sample space Ω , the probability of an event A is denoted by P(A). P can be viewed as a function defined on \mathcal{F} : a collection of some subsets of Ω . The collection \mathcal{F} is expected to satisfy the following properties:
 - (i) \mathcal{F} contains \emptyset and Ω .
 - (ii) \mathcal{F} is closed under complements. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
 - (iii) \mathcal{F} is closed under countable unions. If $A_n \in \mathcal{F}$ for n = 1, 2, ..., then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

If \mathcal{F} satisfies (i)–(iii), we say that \mathcal{F} is a σ -field on Ω .

- Remark. A σ -field is also closed under countable intersections. That is, for a σ -field \mathcal{F} , if $A_n \in \mathcal{F}$ for $n = 1, 2, ..., \text{then } \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.
- Example 2. Suppose that Ω is a sample space. Take \mathcal{F} to be the collection of all subsets of Ω , then \mathcal{F} is a σ -field on Ω . The collection \mathcal{F} is called the power set ($\Re \, \mathfrak{k}$) of Ω and is denoted by 2^{Ω} .

- σ -field generated by a collection. Suppose that Ω is a sample space and \mathcal{C} is a collection of some subsets of Ω . The smallest σ -field on Ω that contains \mathcal{C} is called the σ -field generated by \mathcal{C} and denoted by $\sigma(\mathcal{C})$.
- Example 3. Suppose that $\Omega = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$ and $B = \{1, 2, 3\}$. Let $\mathcal{C} = \{A, B\}$. Find $\sigma(\mathcal{C})$: the σ -field (on Ω) generated by \mathcal{C} . A sketch of solution: Let $C_1 = A \cap B = \{1, 3\}$, $C_2 = A \cap C_1^c = \{5\}$, $C_3 = B \cap C_1^c = \{2\}$, and $C_4 = (\bigcup_{i=1}^3 C_i)^c = \{4, 6\}$. Take $\Lambda = \{1, 2, 3, 4\}$ and

$$\mathcal{F} = \{C_i : i \in \Lambda\} \cup \{C_i \cup C_j : i, j \in \Lambda\} \cup \{C_i \cup C_j \cup C_k : i, j, k \in \Lambda\} \cup \{\emptyset, \Omega\}.$$

It is clear that the every element in \mathcal{F} is in $\sigma(\mathcal{C})$ and \mathcal{F} is a σ -field on Ω , so $\mathcal{F} = \sigma(\mathcal{C})$.

- Borel σ -field. The Borel σ -field on R^k is the σ -field $\sigma(\mathcal{C})$, where \mathcal{C} is the collection of all open sets in R^k , denoted by $\mathcal{B}(R^k)$.
 - When k = 1, the Borel σ -field on R is denoted by $\mathcal{B}(R)$.
 - Let $\mathcal{C}_1 = \{(-\infty, t] : t \in R\}$, then $\sigma(\mathcal{C}_1) = \mathcal{B}(R)$.
 - Let $\mathcal{C}_2 = \{(a, b) : a, b \in \mathbb{R}, a < b\}$, then $\sigma(\mathcal{C}_2) = \mathcal{B}(\mathbb{R})$.
- Definition of a probability function. Suppose that P is a function defined on \mathcal{F} : a σ -field on Ω . Then P is a probability function defined on \mathcal{F} if Psatisfies the following properties.
 - (a) For $A \in \mathcal{F}$, $P(A) \ge 0$.
 - (b) $P(\Omega) = 1$.
 - (c) Additivity. Suppose that $\{A_n\}_{n \in I}$ is a sequence of disjoint events in \mathcal{F} . Then

$$P\left(\bigcup_{n\in I}A_n\right) = \sum_{n\in I}P(A_n).$$

Here the index set I can be $\{1, 2, \ldots\}$ or a finite set $\{1, 2, \ldots, N\}$.

- Note that the results listed below follow from Properties (a)–(c).
 - $P(\emptyset) = 0.$
 - $P(A) + P(A^c) = 1.$
 - $P(A \cup B) = P(A) + P(B) P(A \cap B).$
 - For $A \subset B$, $P(A) \leq P(B)$.
 - $-0 \le P(A) \le 1.$
- Example 4. Consider the \mathcal{F} in Example 2. Let $A = \{1, 3, 5\}, B = \{1, 2\}$ and $C = \{2\}$. Suppose that P is a function defined on \mathcal{F} . In which of the following cases, P cannot be a probability function?

- (a) P(A) = 0.2, P(B) = 0.3, P(C) = 0.2(b) P(A) = 0.2, P(B) = 0.5, P(C) = 0.2
- (c) P(A) = 0.3, P(B) = 0.4, P(C) = 0.2

Ans. (b)

• Given a finite sample space $\Omega = \{o_1, \ldots, o_m\}$, one way to define a probability function P on \mathcal{F} : the σ -field of all subsets of Ω is to specify $P(\{o_i\})$ for each $i \in \{1, \ldots, m\}$. Then

$$P(A) = \sum_{o_i \in A} P(\{o_i\}).$$
 (1)

In the special case where $P(\{o_i\}) = 1/m$ for i = 1, ..., m (the equilikely case), (1) can be simplified to

$$P(A) = \frac{\text{number of elements in } A}{m}.$$

- Example 5. Consider the experiment of tossing a coin twice and record the result of heads and tails as elements in $\Omega = \{HH, HT, TH, TT\}$. Suppose that $P(\{HH\})$, $P(\{HT\})$, $P(\{TH\})$, $P(\{TT\})$ are p^2 , p(1-p), p(1-p), and $(1-p)^2$ respectively, where $p \in (0,1)$. Then P(A) can be determined for $A \subset \Omega$ when p is given. When p = 0.5, we have the equilikely case.
- Permutation and combination.
 - The number of ways of choosing k out of n objects is $C_k^n = n!/(k!(n-k)!)$.
 - The number of ways of choosing k out of n objects and order them is $P_k^n = n!/(n-k)!$.
- Example 6. Suppose that a group of 20 students have received 4 tickets of a special event. Suppose that 4 students will be selected by random to win the tickets. Suppose that among the 20 students, 15 are male and 5 are female. What is the probility that among the 4 selected students, 3 are male and 1 is female? Here it is assumed that the random selection is fair.

Ans.

$$\frac{C_3^{15}C_1^5}{C_4^{20}} = \frac{455}{969} \approx 0.4695562$$

Example 7. 假設某彩券遊戲規則如下:玩家從1-365中選出一數字,開獎時也會從1-365中開出一數字,若所選數字和開出數字相同即為中獎。
 假設該遊戲每期開獎爲獨立,且1-365中每個數字被開出的機率皆相同。
 求n期中所開出中獎數字均不重覆之機率。

Ans.

$$\frac{P_n^{365}}{365^n} = \frac{C_n^{365} \cdot n!}{365^n}$$

- R command for computing C_n^m is choose(m,n).
- R command for computing n! is factorial(n).
- Write a function in R without using choose and factorial to compute the answer in Example 7:

```
ans.fun <- function(n){
   ans <- 1
   if (n >= 2){
     for (i in 2:n){ ans <- ans*(365-i+1)/365 }
   }
   return(ans)
}
#### compute ans.fun(n) when n=10
ans.fun(10)
choose(365,10)*factorial(10)/(365^(10))</pre>
```

Limit of a monotone sequence of sets. Suppose that {A_n}[∞]_{n=1} is a sequence of sets.

– Non-decreasing case. If $A_n \subset A_{n+1}$ for all n, then

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n.$$

– Non-increasing case. If $A_n \supset A_{n+1}$ for all n, then

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n.$$

- Example 8. Suppose that $A_n = (-n, n)$ for $n \in \{1, 2, \ldots\}$. Then $\lim_{n\to\infty} A_n = (-\infty, \infty)$.
- Example 9. Suppose that $A_n = (-1/n, 1/n)$ for $n \in \{1, 2, \ldots\}$. Then $\lim_{n\to\infty} A_n = \{0\}$.
- Continuity. Suppose that \mathcal{F} is a σ -field on Ω and P is a probability function defined on \mathcal{F} . Suppose that $\{A_n\}_{n=1}^{\infty}$ is a sequence of events in \mathcal{F} such that $A_n \subset A_{n+1}$ for all n. Then

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n).$$
⁽²⁾

Proof. Let $B_1 = A_1$ and $B_n = A_n \cap A_{n-1}^c$ for $n \ge 2$. Then $\{B_n\}_{n=1}^{\infty}$ is a sequence of disjoint events. The result follows from additivity of P.

• Example 10. Suppose that \mathcal{F} is a σ -field on $(-\infty, \infty)$ such that $(0, n) \in \mathcal{F}$ for each $n \in \{1, 2, \ldots\}$. Suppose that P is a probability function defined on \mathcal{F} and

$$P((0,n)) = 0.5 \int_0^n e^{-x} dx$$

for each $n \in \{1, 2, \ldots\}$. Find $P((0, \infty))$.

Sol. Since the sequence $\{(0,n)\}_{n=1}^{\infty}$ is increasing and $\cup_{n=1}^{\infty}(0,n) = (0,\infty)$, by the continuity of P, we have

$$P((0,\infty)) = \lim_{n \to \infty} P((0,n)) = \lim_{n \to \infty} 0.5 \int_0^n e^{-x} dx = 0.5.$$

• Note that (2) also holds if $A_n \supset A_{n+1}$ for all n. The proof is left as an exercise.

• The inclusion exclusion formula. Suppose that A_1, \ldots, A_k are k distinct events.

$$P(A_1 \cup A_2 \cup \dots \cup A_k) = \sum_{i=1}^k (-1)^{i+1} p_i,$$

where

$$p_i = \sum_{\{n_1,\dots,n_i\} \in S_{k,i}} P(A_{n_1} \cap \dots \cap A_{n_i})$$

 $S_{k,i} = \{\{n_1, \dots, n_i\} : n_1, \dots, n_i \text{ are } i \text{ distinct numbers in } \{1, \dots, k\}\}$

• In general, given A_1, \ldots, A_k , we have for $k \ge 2$ and $m \le k/2$,

 $p_1 - p_2 + \dots + p_{2m-1} \ge P(A_1 \cup A_2 \cup \dots \cup A_k) \ge p_1 - p_2 + \dots + p_{2m-1} - p_{2m}.$

The specical case m = 1:

$$\sum_{i=1}^{k} P(A_i) \ge P(A_1 \cup A_2 \cup \dots \cup A_k) \ge \sum_{i=1}^{k} P(A_i) - \sum_{1 \le i < j \le k} P(A_i \cap A_j).$$
(3)

- In the textbook, the statement $p_1 \ge p_2 \ge \cdots \ge p_k$ is true for $k \le 3$, but is not true in general.
- Events A and B are independent means $P(A \cap B) = P(A)P(B)$.
 - Events A_1, \ldots, A_k are independent means for any m distinct events B_1, \ldots, B_m in $\{A_1, \ldots, A_k\}$,

$$P(B_1 \cap \dots \cap B_m) = P(B_1) \cdots P(B_m)$$

• Example 11. Suppose that A_1 , A_2 , A_3 and A_4 are four events such that A_i and A_j are independent for $i \neq j$. Suppose that $P(A_i) = a$ for $i = 1, \ldots, 4$. Give an upper bound and a lower bound for $P(\bigcup_{k=1}^4 A_k)$ when a = 0.9 and a = 0.1.

Sol. Apply (3), then we have

$$4a \ge P(\bigcup_{k=1}^{4} A_k) \ge a \times 4 - C_2^4(a)^2 = 4a - 6a^2$$

When a = 0.1, the lower bound is 0.34 and the upper bound is 0.4. When a = 0.9, the lower bound is -1.26 and the upper bound is 3.6. In such case, we can replace the lower bound and the upper bound by 0 and 1 respectively.

- Conditional probability
 - The conditional probability of event A given event B is denoted by P(A|B), where $P(A|B) = P(A \cap B)/P(B)$.
 - If A and B are indepdent and P(B) > 0, then P(A|B) = P(A).

- Bayes theorem. Suppose that $\{A_i\}_{i=1}^n$ is a sequence of disjoint events such that the sample space $\Omega = \bigcup_{i=1}^n A_i$, then given an event B such that P(B) > 0, we have

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)}$$
for $i = 1, \dots, n$.

- Exercise. Suppose that P is a probability function defined on \mathcal{F} : a σ -field on Ω and A is an event in \mathcal{F} such that P(A) > 0. For $B \in \mathcal{F}$, define
 - Q(B) = P(B|A). Is Q a probability function defined on F?
 Example 12. Suppose that F is a σ-field on Ω and P₁ and P₂ are two probability functions defined on F. Define

$$Q(A) = \frac{P_1(A) + P_2(A)}{2}$$

for $A \in \mathcal{F}$. Show that Q is a probability function defined on \mathcal{F} .

Sol. We will show that Q is a probability function defined on \mathcal{F} by verifying the following:

- (a) $Q(A) \ge 0$ for all $A \in \mathcal{F}$.
- (b) $Q(\Omega) = 1.$
- (c) Suppose that $\{A_n\}_{n \in I}$ is a sequence of disjoint events in \mathcal{F} , then

$$Q(\cup_{n\in I}A_n) = \sum_{n\in I}Q(A_n).$$
(4)

- For (a), note that P_1 and P_2 are probability functions on \mathcal{F} , so $Q(A) = (P_1(A) + P_2(A))/2 \ge 0$ since $P_1(A) \ge 0$ and $P_2(A) \ge 0$.
- For (b), $Q(\Omega) = (P_1(\Omega) + P_2(\Omega))/2 = (1+1)/2 = 1$. Here $P_1(\Omega) = 1$ and $P_2(\Omega) = 1$ since P_1 and P_2 are probability functions on \mathcal{F} .
- For (c), suppose that $\{A_n\}_{n \in I}$ is a sequence of disjoint events in \mathcal{F} . Since P_1 and P_2 are probability functions on \mathcal{F} , we have

$$\begin{cases} P_1(\cup_{n\in I}(A_n)) = \sum_{n\in I} P_1(A_n) \\ P_2(\cup_{n\in I}(A_n)) = \sum_{n\in I} P_2(A_n) \end{cases}$$
(5)

Compute $Q(\bigcup_{n\in I}A_n)$ using the definition of Q and we have

$$Q(\cup_{n\in I}A_n) = (P_1(\cup_{n\in I}A_n) + P_2(\cup_{n\in I}A_n))/2$$

$$\stackrel{(5)}{=} \frac{1}{2} \left(\sum_{n\in I} P_1(A_n) + \sum_{n\in I} P_2(A_n) \right)$$

$$= \sum_{n\in I} \frac{P_1(A_n) + P_2(A_n)}{2} = \sum_{n\in I} Q(A_n),$$

so (4) holds.