Events and probabilities

e Sample space (# A& E M): the set containing all possible outcomes of a
random experiment. We denote a sample space by €. In the textbook, a
sample space is often denoted by C.

— Events are represented by subsets of the sample space Q.
— We say that an event occurs if the outcome of the random experiment

belongs to the event set.

e Example 1. Consider the experiment of rolling a die. The sample space
0 =1{1,2,3,4,5,6} and the event of getting an even number is {2,4,6}.

e Notation. Suppose that 2 is a sample space and A and B are subsets of
Q.

— AU B: the union (% %) of A and B, representing the event that at
least one of A, B occurs.

— AN B: the intesection (X %) of A and B, representing the event that
both A and B occur.

— A° the complement (#i%) of A. A° = {z :z € Qand z & A},
representing the event that A does not occur.
e Disjoint sets (ZJF %£4&).
— Two sets A and B are disjoint (Z/f) if AN B = 0.

— Suppose that C is a collection of sets such that any two sets C are
disjoint. Then we say that sets in C are disjoint or C is a collection
of disjoint sets.

e Given a sample space €, the probability of an event A is denoted by P(A).
P can be viewed as a function defined on F: a collection of some subsets
of . The collection F is expected to satisfy the following properties:

(i) F contains () and €.
(ii) F is closed under complements. If A € F, then A° € F.
(iii) F is closed under countable unions. If A, € F forn =1, 2, ..., then
U, A, € F.
If F satisfies (i)-(iii), we say that F is a o-field on .

e Remark. A o-field is also closed under countable intersections. That is,
for a o-field F, if A, € Fforn=1,2, ..., then N7, 4, € F.

e Example 2. Suppose that € is a sample space. Take F to be the collection
of all subsets of €2, then F is a o-field on €. The collection F is called the
power set (% %) of Q and is denoted by 2.



e o-field generated by a collection. Suppose that §2 is a sample space and
C is a collection of some subsets of ). The smallest o-field on € that
contains C is called the o-field generated by C and denoted by o(C).

e Example 3. Suppose that Q@ = {1,2,3,4,5,6}, A = {1,3,5} and B =
{1,2,3}. Let C = {4, B}. Find o(C): the o-field (on ) generated by C.

A sketch of solution: Let C; = AN B = {1,3}, Cy, = ANC{ = {5},
03 =Bn Clc = {2}, and C4 = (uleCi)“ = {4,6} Take A = {1,2,3,4}
and

F=A{C;:ie AJU{C;UC; 1 i,j € AYU{C,UC;UCYy, : 4,4,k € A}U{0, Q}.

It is clear that the every element in F is in 0(C) and F is a o-field on €,
so F =0(C).

e Borel o-field. The Borel o-field on R* is the o-field o(C), where C is the
collection of all open sets in R¥, denoted by B(R¥).

— When k = 1, the Borel o-field on R is denoted by B(R).
— Let Cy = {(—o0,t] : t € R}, then 0(Cy) = B(R).
— Let C2 = {(a,b) : a,b € R,a < b}, then o(C3) = B(R).

e Definition of a probability function. Suppose that P is a function defined
on F: a o-field on Q. Then P is a probability function defined on F if P
satisfies the following properties.

(a) For Ae F, P(A) > 0.
(b) P(Q) =1.
(c) Additivity. Suppose that {A, }ner is a sequence of disjoint events in

F. Then
P <U An> = ZP(An).

nel nel
Here the index set I can be {1,2,...} or a finite set {1,2,...,N}.

e Note that the results listed below follow from Properties (a)—(c).

~ P(0) =0.

- P(A)+ P(A°) =1.

- P(AUB)=P(A)+ P(B)— P(ANB).
- For AC B, P(A) < P(B).

- 0< P(A)<1.

e Example 4. Consider the F in Example 2. Let A = {1,3,5}, B = {1,2}
and C = {2}. Suppose that P is a function defined on F. In which of the
following cases, P cannot be a probability function?



(a) P(A)=0.2, P(B)=0.3, P(C)=0.2

(b) P(A)=0.2, P(B)=0.5, P(C)=0.2

(¢c) P(A)=0.3, P(B) =04, P(C)=0.2
Ans. (b)

Given a finite sample space @ = {01, ..., 0}, one way to define a proba-

bility function P on F: the o-field of all subsets of Q2 is to specify P({o;})
for each 7 € {1,...,m}. Then

P(A) =Y P({o;}). (1)
0;EA

In the special case where P({0;}) = 1/m for i =1, ..., m (the equilikely
case), (1) can be simplified to

P(A) = number of elements in A.

m

Example 5. Consider the experiment of tossing a coin twice and record
the result of heads and tails as elements in Q = {HH,HT,TH,TT}.
Suppose that P({HHY), P({HT}), PUTH}), PTT}) are p?, p(1 — p),
p(1 — p), and (1 — p)? respectively, where p € (0,1). Then P(A) can
be determined for A C Q when p is given. When p = 0.5, we have the
equilikely case.

Permutation and combination.

— The number of ways of choosing k out of n objects is C} = n!/(k!(n—
k).

— The number of ways of choosing k out of n objects and order them
is Pl' =nl/(n— k).

Example 6. Suppose that a group of 20 students have received 4 tickets
of a special event. Suppose that 4 students will be selected by random to
win the tickets. Suppose that among the 20 students, 15 are male and 5
are female. What is the probility that among the 4 selected students, 3
are male and 1 is female? Here it is assumed that the random selection is
fair.
Ans. C15 05
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— R command for computing C;" is choose (m,n).

— R command for computing n! is factorial(n).

Write a function in R without using choose and factorial to compute
the answer in Example 7:

ans.fun <- function(n){
ans <- 1
if (n >= 2){
for (i in 2:n){ ans <- ans*(365-i+1)/365 }
}
return(ans)

}

### compute ans.fun(n) when n=10
ans.fun(10)
choose(365,10) xfactorial (10) /(365 (10))

Limit of a monotone sequence of sets. Suppose that {4, }72, is a sequence
of sets.

— Non-decreasing case. If A,, C A, for all n, then

lim A, = U, A,.

n—oo
— Non-increasing case. If A, D A, 1 for all n, then

lim A, =N, A,.

n—oo
Example 8. Suppose that A, = (—n,n) for n € {1,2,...}. Then
lim,, 00 Ay, = (—00, 00).

Example 9. Suppose that 4,, = (=1/n,1/n) for n € {1,2,...}. Then
lim,, 00 A = {0}.

Continuity. Suppose that F is a o-field on Q and P is a probability
function defined on F. Suppose that {4,}52; is a sequence of events in
F such that A, C A, for all n. Then

lim P(A,) = P(lim A,). 2)

n—roo n—roo

Proof. Let By = A; and B,, = A, N AS_; for n > 2. Then {B,}2, is a
sequence of disjoint events. The result follows from additivity of P.

Example 10. Suppose that F is a o-field on (—o0, 00) such that (0,n) € F
for each n € {1,2,...}. Suppose that P is a probability function defined
on F and N

P((0,n)) = 0.5/ e Tdx

0



for each n € {1,2,...}. Find P((0,c0)).

Sol. Since the sequence {(0,71)}52, is increasing and US4 (0,n) = (0, 00),
by the continuity of P, we have

P((0,00)) = lim P((0,n)) = lim 0.5/0"6—%; =0.5.

n—oo n—oo

e Note that (2) also holds if A, D A,41 for all n. The proof is left as an
exercise.



e The inclusion exclusion formula. Suppose that Ay, ..., Ay are k distinct

events.
k

P(AyUAU---UAg) = Z(—l)mpiv

where
pi= Y,  PA,Nn--nNAy)
{ni,....,n; }€Sk,;
Sk ={{n1,...,ni} 1 na,...,n; are ¢ distinct numbers in {1,...,k}}
e In general, given Ay, ..., Ag, we have for k > 2 and m < k/2,

p1—p2t-+pem—1 > P(AiUAU---UAg) > p1—pa+- -+ Dam—1—DP2m-
The specical case m = 1:

k k
D P(4) > P(AUAU---UAR) > Y "P(A)— > P(AiN4;). (3)
i=1

i=1 1<<i<j<k

e In the textbook, the statement p; > ps > --- > py is true for k < 3, but
is not true in general.

e Events A and B are independent means P(AN B) = P(A)P(B).

— Events Ay, ..., Ay are independent means for any m distinct events
Bl, ooy Bm in {Al, NN 7Ak},

P(BiN--NByp)=P(Bi): - P(Bn)

e Example 11. Suppose that Ay, As, A3 and A4 are four events such that
A; and A; are independent for ¢ # j. Suppose that P(A;) = a for i =1,
..., 4. Give an upper bound and a lower bound for P(U}_,A)) when
a=0.9and a =0.1.

Sol. Apply (3), then we have
4a > P(Ui_ AL) > a x 4 — C3(a)? = 4a — 6a*

When a = 0.1, the lower bound is 0.34 and the upper bound is 0.4. When
a = 0.9, the lower bound is —1.26 and the upper bound is 3.6. In such
case, we can replace the lower bound and the upper bound by 0 and 1
respectively.

e Conditional probability

— The conditional probability of event A given event B is denoted by
P(A|B), where P(A|B) = P(AN B)/P(B).

— If A and B are indepdent and P(B) > 0, then P(A|B) = P(A4).



— Bayes theorem. Suppose that {A;}?; is a sequence of disjoint events
such that the sample space 2 = U}*_; A;, then given an event B such
that P(B) > 0, we have

P(B|Ai)P(A:)

P(B|A1)P(A1) +--- 4+ P(B|A,)P(Ay)

P(A;|B) =

fori=1,...,n.

e Exercise. Suppose that P is a probability function defined on F: a o-field
on  and A is an event in F such that P(A) > 0. For B € F, define
Q(B) = P(BJA). Is Q a probability function defined on F?

e Example 12. Suppose that F is a o-field on Q and P; and P, are two
probability functions defined on F. Define

Qua) = P P

for A € F. Show that @ is a probability function defined on F.

Sol. We will show that @ is a probability function defined on F by verifying
the following;:

(a) Q(A) >0forall A e F.

(b) Q) =1.
(¢) Suppose that {A, }ner is a sequence of disjoint events in F, then
(Unerdn) =Y _Q(A (4)
nel

— For (a), note that P; and P, are probability functions on F, so

Q(A) = (PL(A) + Py(A))/2 > 0 since Pi(A) >0 and P,(A4) > 0.

— For (b), Q(2) = (AA(Q)+ P(R))/2=(14+1)/2=1. Here P,(2) =1
and P»(Q) = 1 since P; and P, are probability functions on F.

— For (c), suppose that {A, },cr is a sequence of disjoint events in F.
Since P; and P, are probability functions on F, we have

{ Pr(Uner(An)) = > er Pr(An) (5)
PZ(UnGI(An)) = Znel P2(An)

Compute Q(UnerAy,) using the definition of ¢ and we have

Q(UnGIAn) = (Pl(UnGIAn) + P2(Un€IAn))/2
® % (Z Pi(An) + Z&(A,J)
nel nel
P (A +P2
-y Al =304,
nel nel
o (4) holds.



