
Events and probabilities

• Sample space (樣本空間): the set containing all possible outcomes of a
random experiment. We denote a sample space by Ω. In the textbook, a
sample space is often denoted by C.

– Events are represented by subsets of the sample space Ω.

– We say that an event occurs if the outcome of the random experiment
belongs to the event set.

• Example 1. Consider the experiment of rolling a die. The sample space
Ω = {1, 2, 3, 4, 5, 6} and the event of getting an even number is {2, 4, 6}.

• Notation. Suppose that Ω is a sample space and A and B are subsets of
Ω.

– A ∪ B: the union (聯集) of A and B, representing the event that at
least one of A, B occurs.

– A∩B: the intesection (交集) of A and B, representing the event that
both A and B occur.

– Ac: the complement (補集) of A. Ac = {x : x ∈ Ω and x ̸∈ A},
representing the event that A does not occur.

• Disjoint sets (互斥集合).

– Two sets A and B are disjoint (互斥) if A ∩B = ∅.
– Suppose that C is a collection of sets such that any two sets C are
disjoint. Then we say that sets in C are disjoint or C is a collection
of disjoint sets.

• Given a sample space Ω, the probability of an event A is denoted by P (A).
P can be viewed as a function defined on F : a collection of some subsets
of Ω. The collection F is expected to satisfy the following properties:

(i) F contains ∅ and Ω.

(ii) F is closed under complements. If A ∈ F , then Ac ∈ F .

(iii) F is closed under countable unions. If An ∈ F for n = 1, 2, . . ., then
∪∞
n=1An ∈ F .

If F satisfies (i)–(iii), we say that F is a σ-field on Ω.

• Remark. A σ-field is also closed under countable intersections. That is,
for a σ-field F , if An ∈ F for n = 1, 2, . . ., then ∩∞

n=1An ∈ F .

• Example 2. Suppose that Ω is a sample space. Take F to be the collection
of all subsets of Ω, then F is a σ-field on Ω. The collection F is called the
power set (冪集) of Ω and is denoted by 2Ω.
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• σ-field generated by a collection. Suppose that Ω is a sample space and
C is a collection of some subsets of Ω. The smallest σ-field on Ω that
contains C is called the σ-field generated by C and denoted by σ(C).

• Example 3. Suppose that Ω = {1, 2, 3, 4, 5, 6}, A = {1, 3, 5} and B =
{1, 2, 3}. Let C = {A,B}. Find σ(C): the σ-field (on Ω) generated by C.
A sketch of solution: Let C1 = A ∩ B = {1, 3}, C2 = A ∩ Cc

1 = {5},
C3 = B ∩ Cc

1 = {2}, and C4 = (∪3
i=1Ci)

c = {4, 6}. Take Λ = {1, 2, 3, 4}
and

F = {Ci : i ∈ Λ}∪{Ci∪Cj : i, j ∈ Λ}∪{Ci∪Cj∪Ck : i, j, k ∈ Λ}∪{∅,Ω}.

It is clear that the every element in F is in σ(C) and F is a σ-field on Ω,
so F = σ(C).

• Borel σ-field. The Borel σ-field on Rk is the σ-field σ(C), where C is the
collection of all open sets in Rk, denoted by B(Rk).

– When k = 1, the Borel σ-field on R is denoted by B(R).

– Let C1 = {(−∞, t] : t ∈ R}, then σ(C1) = B(R).

– Let C2 = {(a, b) : a, b ∈ R, a < b}, then σ(C2) = B(R).

• Definition of a probability function. Suppose that P is a function defined
on F : a σ-field on Ω. Then P is a probability function defined on F if P
satisfies the following properties.

(a) For A ∈ F , P (A) ≥ 0.

(b) P (Ω) = 1.

(c) Additivity. Suppose that {An}n∈I is a sequence of disjoint events in
F . Then

P

(⋃
n∈I

An

)
=
∑
n∈I

P (An).

Here the index set I can be {1, 2, . . .} or a finite set {1, 2, . . . , N}.

• Note that the results listed below follow from Properties (a)–(c).

– P (∅) = 0.

– P (A) + P (Ac) = 1.

– P (A ∪B) = P (A) + P (B)− P (A ∩B).

– For A ⊂ B, P (A) ≤ P (B).

– 0 ≤ P (A) ≤ 1.

• Example 4. Consider the F in Example 2. Let A = {1, 3, 5}, B = {1, 2}
and C = {2}. Suppose that P is a function defined on F . In which of the
following cases, P cannot be a probability function?
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(a) P (A) = 0.2, P (B) = 0.3, P (C) = 0.2

(b) P (A) = 0.2, P (B) = 0.5, P (C) = 0.2

(c) P (A) = 0.3, P (B) = 0.4, P (C) = 0.2

Ans. (b)

• Given a finite sample space Ω = {o1, . . . , om}, one way to define a proba-
bility function P on F : the σ-field of all subsets of Ω is to specify P ({oi})
for each i ∈ {1, . . . ,m}. Then

P (A) =
∑
oi∈A

P ({oi}). (1)

In the special case where P ({oi}) = 1/m for i = 1, . . ., m (the equilikely
case), (1) can be simplified to

P (A) =
number of elements in A

m
.

• Example 5. Consider the experiment of tossing a coin twice and record
the result of heads and tails as elements in Ω = {HH,HT, TH, TT}.
Suppose that P ({HH}), P ({HT}), P ({TH}), P ({TT}) are p2, p(1− p),
p(1 − p), and (1 − p)2 respectively, where p ∈ (0, 1). Then P (A) can
be determined for A ⊂ Ω when p is given. When p = 0.5, we have the
equilikely case.

• Permutation and combination.

– The number of ways of choosing k out of n objects is Cn
k = n!/(k!(n−

k)!).

– The number of ways of choosing k out of n objects and order them
is Pn

k = n!/(n− k)!.

• Example 6. Suppose that a group of 20 students have received 4 tickets
of a special event. Suppose that 4 students will be selected by random to
win the tickets. Suppose that among the 20 students, 15 are male and 5
are female. What is the probility that among the 4 selected students, 3
are male and 1 is female? Here it is assumed that the random selection is
fair.

Ans.
C15

3 C5
1

C20
4

=
455

969
≈ 0.4695562

• Example 7. 假設某彩券遊戲規則如下︰玩家從1–365中選出一數字，開
獎時也會從1–365中開出一數字，若所選數字和開出數字相同即為中獎。
假設該遊戲每期開獎為獨立，且1–365中每個數字被開出的機率皆相同。
求n期中所開出中獎數字均不重覆之機率。

Ans.
P 365
n

365n
=

C365
n · n!
365n
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– R command for computing Cm
n is choose(m,n).

– R command for computing n! is factorial(n).

• Write a function in R without using choose and factorial to compute
the answer in Example 7:

ans.fun <- function(n){

ans <- 1

if (n >= 2){

for (i in 2:n){ ans <- ans*(365-i+1)/365 }

}

return(ans)

}

### compute ans.fun(n) when n=10

ans.fun(10)

choose(365,10)*factorial(10)/(365^(10))

• Limit of a monotone sequence of sets. Suppose that {An}∞n=1 is a sequence
of sets.

– Non-decreasing case. If An ⊂ An+1 for all n, then

lim
n→∞

An = ∪∞
n=1An.

– Non-increasing case. If An ⊃ An+1 for all n, then

lim
n→∞

An = ∩∞
n=1An.

• Example 8. Suppose that An = (−n, n) for n ∈ {1, 2, . . .}. Then
limn→∞ An = (−∞,∞).

• Example 9. Suppose that An = (−1/n, 1/n) for n ∈ {1, 2, . . .}. Then
limn→∞ An = {0}.

• Continuity. Suppose that F is a σ-field on Ω and P is a probability
function defined on F . Suppose that {An}∞n=1 is a sequence of events in
F such that An ⊂ An+1 for all n. Then

lim
n→∞

P (An) = P ( lim
n→∞

An). (2)

Proof. Let B1 = A1 and Bn = An ∩ Ac
n−1 for n ≥ 2. Then {Bn}∞n=1 is a

sequence of disjoint events. The result follows from additivity of P .

• Example 10. Suppose that F is a σ-field on (−∞,∞) such that (0, n) ∈ F
for each n ∈ {1, 2, . . .}. Suppose that P is a probability function defined
on F and

P ((0, n)) = 0.5

∫ n

0

e−xdx
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for each n ∈ {1, 2, . . .}. Find P ((0,∞)).

Sol. Since the sequence {(0, n)}∞n=1 is increasing and ∪∞
n=1(0, n) = (0,∞),

by the continuity of P , we have

P ((0,∞)) = lim
n→∞

P ((0, n)) = lim
n→∞

0.5

∫ n

0

e−xdx = 0.5.

• Note that (2) also holds if An ⊃ An+1 for all n. The proof is left as an
exercise.
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• The inclusion exclusion formula. Suppose that A1, . . ., Ak are k distinct
events.

P (A1 ∪A2 ∪ · · · ∪Ak) =

k∑
i=1

(−1)i+1pi,

where
pi =

∑
{n1,...,ni}∈Sk,i

P (An1
∩ · · · ∩Ani

)

Sk,i = {{n1, . . . , ni} : n1, . . . , ni are i distinct numbers in {1, . . . , k}}

• In general, given A1, . . ., Ak, we have for k ≥ 2 and m ≤ k/2,

p1−p2+ · · ·+p2m−1 ≥ P (A1∪A2∪· · ·∪Ak) ≥ p1−p2+ · · ·+p2m−1−p2m.

The specical case m = 1:

k∑
i=1

P (Ai) ≥ P (A1∪A2∪· · ·∪Ak) ≥
k∑

i=1

P (Ai)−
∑

1≤<i<j≤k

P (Ai∩Aj). (3)

• In the textbook, the statement p1 ≥ p2 ≥ · · · ≥ pk is true for k ≤ 3, but
is not true in general.

• Events A and B are independent means P (A ∩B) = P (A)P (B).

– Events A1, . . ., Ak are independent means for any m distinct events
B1, . . ., Bm in {A1, . . . , Ak},

P (B1 ∩ · · · ∩Bm) = P (B1) · · ·P (Bm)

• Example 11. Suppose that A1, A2, A3 and A4 are four events such that
Ai and Aj are independent for i ̸= j. Suppose that P (Ai) = a for i = 1,
. . ., 4. Give an upper bound and a lower bound for P (∪4

k=1Ak) when
a = 0.9 and a = 0.1.

Sol. Apply (3), then we have

4a ≥ P (∪4
k=1Ak) ≥ a× 4− C4

2 (a)
2 = 4a− 6a2

When a = 0.1, the lower bound is 0.34 and the upper bound is 0.4. When
a = 0.9, the lower bound is −1.26 and the upper bound is 3.6. In such
case, we can replace the lower bound and the upper bound by 0 and 1
respectively.

• Conditional probability

– The conditional probability of event A given event B is denoted by
P (A|B), where P (A|B) = P (A ∩B)/P (B).

– If A and B are indepdent and P (B) > 0, then P (A|B) = P (A).
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– Bayes theorem. Suppose that {Ai}ni=1 is a sequence of disjoint events
such that the sample space Ω = ∪n

i=1Ai, then given an event B such
that P (B) > 0, we have

P (Ai|B) =
P (B|Ai)P (Ai)

P (B|A1)P (A1) + · · ·+ P (B|An)P (An)

for i = 1, . . ., n.

• Exercise. Suppose that P is a probability function defined on F : a σ-field
on Ω and A is an event in F such that P (A) > 0. For B ∈ F , define
Q(B) = P (B|A). Is Q a probability function defined on F?

• Example 12. Suppose that F is a σ-field on Ω and P1 and P2 are two
probability functions defined on F . Define

Q(A) =
P1(A) + P2(A)

2

for A ∈ F . Show that Q is a probability function defined on F .

Sol. We will show thatQ is a probability function defined on F by verifying
the following:

(a) Q(A) ≥ 0 for all A ∈ F .

(b) Q(Ω) = 1.

(c) Suppose that {An}n∈I is a sequence of disjoint events in F , then

Q(∪n∈IAn) =
∑
n∈I

Q(An). (4)

– For (a), note that P1 and P2 are probability functions on F , so
Q(A) = (P1(A) + P2(A))/2 ≥ 0 since P1(A) ≥ 0 and P2(A) ≥ 0.

– For (b), Q(Ω) = (P1(Ω)+P2(Ω))/2 = (1+1)/2 = 1. Here P1(Ω) = 1
and P2(Ω) = 1 since P1 and P2 are probability functions on F .

– For (c), suppose that {An}n∈I is a sequence of disjoint events in F .
Since P1 and P2 are probability functions on F , we have{

P1(∪n∈I(An)) =
∑

n∈I P1(An)
P2(∪n∈I(An)) =

∑
n∈I P2(An)

(5)

Compute Q(∪n∈IAn) using the definition of Q and we have

Q(∪n∈IAn) = (P1(∪n∈IAn) + P2(∪n∈IAn))/2

(5)
=

1

2

(∑
n∈I

P1(An) +
∑
n∈I

P2(An)

)

=
∑
n∈I

P1(An) + P2(An)

2
=
∑
n∈I

Q(An),

so (4) holds.
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