
B-splines

• A spline function of order m and knots ξ1, . . ., ξk is a piecewise poly-
nomial that can be expressed as a linear combination of the functions
x0, . . ., xm−1, (x− ξ1)

m−1
+ , . . ., (x− ξk)

m−1
+ , where

(x− ξi)
m−1
+ =

{
(x− ξi)

m−1 if x ≥ ξi;
0 otherwise,

for i = 1, . . ., k. The basis functions x0, . . ., xm−1, (x − ξ1)
m−1
+ , . . .,

(x− ξk)
m−1
+ are called truncated power basis functions.

• Plot f(x) = (x− 0.5)2+ for x ∈ [0, 1].

f <- function(x, a=0.5){

ans <- (x-a)^2

ans[x<a] <- 0

return(ans)

}

curve(f,0,1)

• A spline function of order m and inner knots ξ1, . . ., ξk on an interval
[a, b] can be expressed as a linear combination of the B-spline basis
functions on [a, b] of order m with inner knots ξ1, . . ., ξk.

• Each B-spline basis function of order m is characterized by a set of
knots y1, . . ., ym+1 (arranged in ascending order), which is denoted by
N(·|y1, . . . , ym+1). To compute B-spline basis functions, the following
recursive formulas are used.

N(x|y1, . . . , ym+1)

=
x− y1
ym − y1

N(x|y1, . . . , ym) +
ym+1 − x

ym+1 − y2
N(x|y2, . . . , ym+1).

N(x|y1, y2) =
{

1 if x ∈ [y1, y2);
0 otherwise.

N(x| y1, . . . , y1︸ ︷︷ ︸
m times

, y2) =

{
(y2 − x)m−1/(y2 − y1)

m−1 if x ∈ [y1, y2);
0 otherwise.

N(x|y1, y2, . . . , y2︸ ︷︷ ︸
m times

) =

{
(x− y1)

m−1/(y2 − y1)
m−1 if x ∈ [y1, y2);

0 otherwise.

1

• B-spline basis functions on [a, b] of order m with knots ξ1, . . ., ξk. Let
y1, . . ., y2m+k be the sequence

a, . . . , a,︸ ︷︷ ︸
m times

ξ1, . . . , ξk, b, . . . , b,︸ ︷︷ ︸
m times

then the (m+k) functionsN(·|y1, . . . , ym+1), . . ., N(·|ym+k, . . . , y2m+k)
are the B-spline basis functions on [a, b] of order m with knots ξ1, . . .,
ξk.

• Note. The B-spline basis functions sum up to 1 and each one takes
values in [0, 1].

• The function bs in R Package splines can be used for computing the
(m+ k) B-spline functions on [a, b] of order m with knots ξ1, . . ., ξk.

– Suppose that knots= (ξ1, . . ., ξk) and x= (x1, . . . , xn) are vectors
in R, then B-spline basis functions on [a,b] of order m with knots
ξ1, . . ., ξk evaluated at x form a n× (m+k) matrix X, where the
j-th column of X is the j-th B-spline basis function evaluated at
x. The matrix X can be computed using the R command

bs(x, knots=knots, deg=m-1, Boundary.knots=c(a,b), intercept=TRUE)

• Example 1. Let B1, . . ., Bm+k be the B-spline basis functions on
[0, 1] of order m with knots ξ1, . . ., ξk. Check whether each of B1(x),
. . ., Bm+k(x) can be expressed as linear combinations of the functions
1, x, . . ., xm−1, (x− ξ1)

m−1
+ , . . ., (x− ξk)

m−1
+ for x =(1:1000)/1001,

m = 4, k = 3, and (ξ1, . . . , ξ3) =(1:3)/4.

Sol.

require("splines")

x <- (1:1000)/1001

m <- 4

k <- 3

knotv <- (1:k)/(k+1)

g <- function(x, a, m){

ans <- (x-a)^(m-1)

ans[x<a] <- 0

return(ans)

2

}

n <- length(x)

pbx <- matrix(1, n, m)

for (j in 2:m){ pbx[,j] <- x^(j-1) }

tpbx <- matrix(0, n, k)

for (j in 1:k){ tpbx[,j] <- g(x, knotv[j],m) }

tpbx <- cbind(pbx, tpbx)

bsx <- bs(x, knots=knotv, deg=m-1, Boundary.knots=c(0,1), intercept = TRUE)

#B-spline basis functions are linear combinations

#of truncated power basis functions

for (j in 1:(m+k)){

y <- bsx[,j]

y.lm <- lm(y~tpbx-1)

print(summary(y.lm)$r.squared)

}

#Truncated power basis functions are linear combinations

#of B-spline basis functions

for (j in 1:(m+k)){

y <- tpbx[,j]

y.lm <- lm(y~bsx-1)

print(summary(y.lm)$r.squared)

}

Each of B1(x), . . ., Bm+k(x) can be expressed as linear combinations
of the functions 1, x, . . ., xm−1, (x − ξ1)

m−1
+ , . . ., (x − ξk)

m−1
+ for

x =(1:1000)/1001, m = 4, k = 3, and (ξ1, . . . , ξ3) =(1:3)/4.

• Spline functions can approximated smooth functions well if the number
of knots are large enough.

3

• Exercise 1. Let f(x) = x sin(20x) for x ∈ [0, 1]. Suppose that
n = 1000, (X1, . . ., Xn) = seq(0, 1, length=n), and Yi = f(Xi) for
i = 1, . . ., n.

(a) Find the ISE of estimating f based on (X1, Y1), . . ., (Xn, Yn) by
approximating f using the best linear combination of B-spline
basis functions on [0, 1] of order 4 with k equally spaced knots
((1:k)/(k+1)) for k = 1, 2, . . ., 7. Which k gives the best ISE?

(b) Consider estimating f based on (X1, Y1), . . ., (Xn, Yn) by approx-
imating f using the best linear combination of 1, x, . . ., xm. Let
m0 be the smallest m such that the resulting ISE is smaller than
the best ISE found in Part (a). Find m0.

• Exercise 2. Let f(x) = x sin(20x) for x ∈ [0, 1]. Suppose that
n = 1000, (X1, . . ., Xn) = seq(0, 1, length=n), and Yi = f(Xi)+εi
for i = 1, . . ., n, where εi’s are IID N(0, σ2) variables with σ = 0.2.
Consider estimating f based on (X1, Y1), . . ., (Xn, Yn) by approximat-
ing f using

(i) B-spline basis functions on [0, 1] of order 4 with k equally spaced
knots and

(ii) polynomial basis functions 1, x, . . ., xm,

where the number of knots k is the k that gives the best ISE in Part
(a) in Exercise 1, and m is m0 in Part (b) in Exercise 1. Find the
IMSEs for (i) and (ii) based on 10000 simulations. Use set.seed to
make sure that the simulation data for (i) and (ii) are the same.

• Exercise 3. Let f(x) = x sin(20x) for x ∈ [0, 1]. Suppose that
n = 1000, (X1, . . ., Xn) = seq(0, 1, length=n), and Yi = f(Xi)+εi
for i = 1, . . ., n, where εi’s are IID N(0, σ2) variables with σ = 0.2.
Consider estimating f based on (X1, Y1), . . ., (Xn, Yn) by approximat-
ing f using

(i) B-spline basis functions with order 4 and k equally spaced knots
and

(ii) polynomial basis functions 1, x, . . ., xm,

where k and m are chosen using cross-validation. The selection ranges
for k and m are {1, 2, . . . , 7} and {1, 2, . . . , 12}. Find the IMSEs for
(i) and (ii) based on 10000 simulations. Use set.seed to make sure
that the simulation data for (i) and (ii) are the same.

4

Exercise 4. Define a function f in R:

f0 <- function(x){

ans <- x*sin(20*x)

ans[x<0] <- 0

return(ans)

}

f <- function(x){ f0(2*(x-0.5))}

curve(f,0,1)

It is expected that we can approximate f well using a cubic spline
(order 4) with knots (1:13)/14.

(a) Generate data from a nonparametric regression model as follows:

set.seed(1)

n <- 1000

x <- seq(0,1,length=n)

y <- f(x) + rnorm(n, sd=0.02)

Fit a cubic spline to the data with knots (1:13)/14 using trun-
cated power basis functions. Remove the insignificant knots using
backward elimination. How many knots are left in the model?

(b) Let knots0 be the remaining knots from Part (a). Generate data
from a nonparametric regression model as follows:

n <- 1000

x <- seq(0,1,length=n)

y <- f(x)

Fit a cubic spline to the data with knots =knots0 using B-spline
basis functions on [0, 1]. Find the ISE. Denote this ISE by ISE.SP.
Recall that we can also approximate f well on [0.5, 1] using a
polynomial of high degree. Is it possible to use a polynomial of
degree 11 to approximate f so that the ISE is smaller or equal to
ISE.SP?

5

• The function splineDesign in R Package splines can be used for
computing a single B-spline basis function N(·|y1, . . . , ym+1).

– Suppose that y= (y1, . . . , ym+1) and x = (x1, . . . , xn) are two
vectors in R, then

splineDesign(y, x, ord=length(y)-1, outer.ok=TRUE)[,1]

gives the vector (N(x1|y1, . . . , ym+1), . . ., N(xn|y1, . . . , ym+1)).

• Example 2. Check whether splineDesign gives

N(x|0, 0, 0, 1) =
{

(1− x)3−1/(1− 0)3−1 = (1− x)2 if x ∈ [0, 1);
0 otherwise.

R commands:

require("splines")

y <- c(0,0,0,1)

f <- function(x){

return(splineDesign(y, x, ord=length(y)-1, outer.ok=TRUE)[,1])

}

curve(f,0,1)

n0001 <- function(x){ (1-x)^2 }

curve(n0001, 0, 1, add=T, col=2) #Plot the N(|0,0,0,1) function on [0,1]

• Example 3. Compute the B-spline basis functions on [0, 1] of order
three with knots 0.1 and 0.2 using bs and splineDesign. Plot the
five B-spline basis functions.

x <- (1:1000)/1001

knotlist=c(0.1, 0.2)

ord=3

knot_all=c(rep(0,ord), knotlist, rep(1,ord))

nb = length(knotlist)+ord

plot(x,x,type="n",ylab="")

s=0

for (i in 1:nb){

y = knot_all[i:(i+ord)]

f <- function(x){

6

n <- length(x)

return(splineDesign(y, x, ord=length(y)-1, outer.ok=T)[,1])

}

f1 <- function(x){

bx=bs(x, deg=ord-1, knots=knotlist, Boundary.knots=c(0,1), intercept=T)

return(bx[,i])

}

lines(x,f(x), type="l"); lines(x, f1(x), col=i+1)

s=s+sum(abs(f(x)-f1(x)))

}

s

7

