Evalution of a nonparametric function estimtor

• Nonparametric regression. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are independent data and

$$Y_i = m(X_i) + \varepsilon_i \tag{1}$$

for i = 1, ..., n, where $\varepsilon_1, ..., \varepsilon_n$ are IID, $(\varepsilon_1, ..., \varepsilon_n)$ is independent of $(X_1, ..., X_n), E(\varepsilon_1) = 0$ and $Var(\varepsilon_1) = \sigma^2$. It is common to assume that

- (a) X_1, \ldots, X_n are IID, or
- (b) X_1, \ldots, X_n are not random.

The problem of interest is to estimate m based on $(X_1, Y_1), \ldots, (X_n, Y_n)$ for Case (a). For Case (b), m can be estimated well at some point x_0 only if there are enough X_i s that are close to x_0 .

• Suppose that the range of X_1 is [a, b]. Let \hat{m} be an estimator of m. Then the integrated squared error (ISE) is

$$\int_{a}^{b} (\hat{m}(x) - m(x))^2 dx$$

and one can use the integrated mean squared error (IMSE) to evaluation the performance of $\hat{m}.$

IMSE =
$$\int_{a}^{b} E(\hat{m}(x) - m(x))^{2} dx = E(\text{ISE}).$$
 (2)

- ISE can be computed using the R command integrate.
- To approximate IMSE, one needs to generate IID N data sets data₁, ..., data_N from (1) and let E_j be the ISE for the \hat{m} computed based on data_j. Then

IMSE =
$$E(ISE) \approx \frac{1}{N} \sum_{j=1}^{N} E_j$$
 (3)

for large N.

• The R command integrate(g,a,b) computes $\int_a^b g(x)dx$. Note that g must accept a vector input.

Example 1. Find $\int_0^1 \left(\int_0^x \sin(y^2) dy \right) dx$.

```
f1 <- function(y){ sin(y<sup>2</sup>) }
g <- function(x){ integrate(f1, 0, x)$value }
g1 <- Vectorize(g)  #g1(x1, ..., xn) = (g(x1), ..., g(xn))
g(0.5); g(0.6); g1(c(0.5, 0.6))
integrate(g1, 0, 1)$value</pre>
```

- Note that running integrate(g, 0, 1) gives an error.

 $\bullet\,$ Recall that

$$RSSCV(h) = \sum_{i=1}^{n} (Y_i - \hat{m}_{-i,h}(X_i))^2,$$

where

$$E(Y_i - \hat{m}_{-i,h}(X_i))^2 = E \int (m(x) - \hat{m}_{-i,h}(x))^2 f_X(x) dx + \sigma^2,$$

and f_X is the density of X_i . We expect

$$\frac{RSSCV(h)}{n} - \sigma^2 \approx E \int (m(x) - \hat{m}_{-i,h}(x))^2 f_X(x) dx$$
$$\approx E \int (m(x) - \hat{m}(x))^2 f_X(x) dx.$$

When the distribution of X_i is Uniform(0, 1), we expect $RSSCV/n - \sigma^2$ to be close to IMSE.

- Exercise 1. Let N = 100. Simulated N data sets from (1) with $m(x) = \sin(20x)$, n = 1000, X_1, \ldots, X_n are IID Uniform(0, 1), $\varepsilon_1, \ldots, \varepsilon_n$ are IID $N(0, \sigma^2)$ errors with $\sigma = 0.05$. Compute the (approximate) IMSE using (3) for the kernel regression estimator with the bandwidth $h \in \{0.005, 0.01, 0.1\}$.
- Exercise 2. Generate 10 data sets from the model in (1) with $m(x) = \sin(20x)$, n = 1000, X_1, \ldots, X_n are IID Uniform(0, 1), $\varepsilon_1, \ldots, \varepsilon_n$ are IID $N(0, \sigma^2)$ errors with $\sigma = 0.05$.
 - (a) Compute $RSSCV/n \sigma^2$ for each data set for $h \in \{0.1, 0.01\}$. Does it appear that all of the 10 $RSSCV/n \sigma^2$ values are close to the IMSE values for $h \in \{0.1, 0.01\}$ from Exercise 1?
 - (b) Suppose that the 10 data sets are generated the same way as in Part (a) except that the distribution for each X_i is the beta distribution beta(2, 2). Compute $RSSCV/n \sigma^2$ for each data set for $h \in \{0.1, 0.01\}$. Does it appear that all of the 10 $RSSCV/n \sigma^2$ values are close to the IMSE value for each $h \in \{0.1, 0.01\}$ from Exercise 1?
 - (c) For \hat{m} : an estimator of m, if we define

$$\text{IMSE}^* = E \int (\hat{m}(u) - m(u))^2 f_X(u) du,$$

where f_X is the density for the beta distribution beta(2, 2). When h = 0.1, does it appear that all of the 10 $RSSCV/n - \sigma^2$ values from Part (b) are close to the IMSE* value? You may approximate the IMSE* value using the average over 100 weighted ISE values.

- Note. The R command rbeta(n, 2,2) generates n random numbers from beta(2,2).
- Exercise 3. Let N = 100. Simulated N data sets from (1) with $m(x) = \sin(20x)$, n = 1000, X_1, \ldots, X_n are IID Uniform(0, 1), $\varepsilon_1, \ldots, \varepsilon_n$ are IID $N(0, \sigma^2)$ errors with $\sigma = 0.05$. Compute the IMSE using (3) for the kernel regression estimator with the bandwidth chosen using leave-one-out cross validation, where the bandwidth h is in $\{0.005, 0.01, 0.1\}$.