
Evalution of a nonparametric function estimtor

• Nonparametric regression. Suppose that (X1, Y1), . . ., (Xn, Yn) are inde-
pendent data and

Yi = m(Xi) + εi (1)

for i = 1, . . ., n, where ε1, . . ., εn are IID, (ε1, . . ., εn) is independent of
(X1, . . ., Xn), E(ε1) = 0 and V ar(ε1) = σ2. It is common to assume that

(a) X1, . . ., Xn are IID, or

(b) X1, . . ., Xn are not random.

The problem of interest is to estimate m based on (X1, Y1), . . ., (Xn, Yn)
for Case (a). For Case (b), m can be estimated well at some point x0 only
if there are enough Xis that are close to x0.

• Suppose that the range of X1 is [a, b]. Let m̂ be an estimator of m. Then
the integrated squared error (ISE) is∫ b

a

(m̂(x)−m(x))2dx

and one can use the integrated mean squared error (IMSE) to evaluation
the performance of m̂.

IMSE =

∫ b

a

E(m̂(x)−m(x))2dx = E(ISE). (2)

– ISE can be computed using the R command integrate.

– To approximate IMSE, one needs to generate IID N data sets data1,
. . ., dataN from (1) and let Ej be the ISE for the m̂ computed based
on dataj . Then

IMSE = E(ISE) ≈ 1

N

N∑
j=1

Ej (3)

for large N .

• The R command integrate(g,a,b) computes
∫ b

a
g(x)dx. Note that g

must accept a vector input.

Example 1. Find
∫ 1

0

(∫ x

0
sin(y2)dy

)
dx.

f1 <- function(y){ sin(y^2) }

g <- function(x){ integrate(f1, 0, x)$value }

g1 <- Vectorize(g) #g1(x1, .., xn) = (g(x1), ..., g(xn))

g(0.5); g(0.6); g1(c(0.5, 0.6))

integrate(g1, 0, 1)$value

– Note that running integrate(g, 0, 1) gives an error.
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• Recall that

RSSCV (h) =

n∑
i=1

(Yi − m̂−i,h(Xi))
2,

where

E(Yi − m̂−i,h(Xi))
2 = E

∫
(m(x)− m̂−i,h(x))

2fX(x)dx+ σ2,

and fX is the density of Xi. We expect

RSSCV (h)

n
− σ2 ≈ E

∫
(m(x)− m̂−i,h(x))

2fX(x)dx

≈ E

∫
(m(x)− m̂(x))2fX(x)dx.

When the distribution of Xi is Uniform(0, 1), we expect RSSCV/n−σ2

to be close to IMSE.

• Exercise 1. Let N = 100. Simulated N data sets from (1) with m(x) =
sin(20x), n = 1000, X1, . . ., Xn are IID Uniform(0, 1), ε1, . . ., εn are IID
N(0, σ2) errors with σ = 0.05. Compute the (approximate) IMSE using
(3) for the kernel regression estimator with the bandwidth h ∈ {0.005,
0.01, 0.1}.

• Exercise 2. Generate 10 data sets from the model in (1) with m(x) =
sin(20x), n = 1000, X1, . . ., Xn are IID Uniform(0, 1), ε1, . . ., εn are IID
N(0, σ2) errors with σ = 0.05.

(a) Compute RSSCV/n− σ2 for each data set for h ∈ {0.1, 0.01}. Does
it appear that all of the 10 RSSCV/n − σ2 values are close to the
IMSE values for h ∈ {0.1, 0.01} from Exercise 1?

(b) Suppose that the 10 data sets are generated the same way as in
Part (a) except that the distribution for each Xi is the beta distri-
bution beta(2, 2). Compute RSSCV/n − σ2 for each data set for
h ∈ {0.1, 0.01}. Does it appear that all of the 10 RSSCV/n−σ2 val-
ues are close to the IMSE value for each h ∈ {0.1, 0.01} from Exercise
1?

(c) For m̂: an estimator of m, if we define

IMSE∗ = E

∫
(m̂(u)−m(u))2fX(u)du,

where fX is the density for the beta distribution beta(2, 2). When
h = 0.1, does it appear that all of the 10 RSSCV/n−σ2 values from
Part (b) are close to the IMSE* value? You may approximate the
IMSE* value using the average over 100 weighted ISE values.

– Note. The R command rbeta(n, 2,2) generates n random numbers
from beta(2, 2) .

• Exercise 3. Let N = 100. Simulated N data sets from (1) with m(x) =
sin(20x), n = 1000, X1, . . ., Xn are IID Uniform(0, 1), ε1, . . ., εn are IID
N(0, σ2) errors with σ = 0.05. Compute the IMSE using (3) for the kernel
regression estimator with the bandwidth chosen using leave-one-out cross
validation, where the bandwidth h is in {0.005, 0.01, 0.1}.
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