Evalution of a nonparametric function estimtor

e Nonparametric regression. Suppose that (X1,Y7), ..., (X,,Y,) are inde-
pendent data and

Yi=m(X;)+e; (1)

fori =1, ..., n, where e1, ..., &, are IID, (g1, ..., &,) is independent of

(X1, ..., Xy), E(e1) = 0 and Var(e;) = 2. It is common to assume that

(a) Xy, ..., X, are IID, or
(b) Xy, ..., X, are not random.
The problem of interest is to estimate m based on (X1,Y7), ..., (Xn,Yn)

for Case (a). For Case (b), m can be estimated well at some point zg only
if there are enough X;s that are close to .

e Suppose that the range of X7 is [a,b]. Let 1 be an estimator of m. Then
the integrated squared error (ISE) is

/ (@) — miz))?d

and one can use the integrated mean squared error (IMSE) to evaluation
the performance of m.

IMSE = / bE(m(x) —m(z))*dx = E(ISE). (2)

— ISE can be computed using the R command integrate.

— To approximate IMSE, one needs to generate IID N data sets datay,
..., datay from (1) and let E; be the ISE for the m computed based
on data;. Then

IMSE = E(ISE) ~ % > E; (3)

j=1
for large N.

e The R command integrate(g,a,b) computes f: g(x)dz. Note that g
must accept a vector input.

Example 1. Find fol (fy sin(y?)dy) da.

f1 <- function(y){ sin(y~2) }

g <- function(x){ integrate(f1l, 0, x)$value }

gl <- Vectorize(g) #gl(x1l, .., xn) = (g(x1), ..., g(zn))
£(0.5); g(0.6); g1(c(0.5, 0.6))

integrate(gl, 0, 1)$value

— Note that running integrate(g, 0, 1) gives an error.



e Recall that

RSSCV(h) =Y (Y; — i n(Xi))?,
=1
where

E(Y; —m_in(X)? = E/(m(nc) — i (2)? fx (x)dx + o2,

and fx is the density of X;. We expect
RSSCV (h) 2 /(

— ~ F
~ B [[(m(o) - (o) x ) da,

When the distribution of X; is Uni form(0, 1), we expect RSSCV/n — o>
to be close to IMSE.

e Exercise 1. Let N = 100. Simulated N data sets from (1) with m(z) =
sin(20x), n = 1000, X1, ..., X,, are IID Uniform(0,1), €1, ..., €, are IID
N(0,0?) errors with ¢ = 0.05. Compute the (approximate) IMSE using
(3) for the kernel regression estimator with the bandwidth A € {0.005,
0.01, 0.1}.

p m(x) — m_iyh(x))2fx (z)dz

e Exercise 2. Generate 10 data sets from the model in (1) with m(z) =
sin(20zx), n = 1000, X1, ..., X,, are IID Uniform(0,1), €1, ..., &, are IID
N(0,0?) errors with o = 0.05.

(a) Compute RSSCV/n — o2 for each data set for h € {0.1,0.01}. Does
it appear that all of the 10 RSSCV/n — o2 values are close to the
IMSE values for h € {0.1,0.01} from Exercise 17?

(b) Suppose that the 10 data sets are generated the same way as in
Part (a) except that the distribution for each X; is the beta distri-
bution beta(2,2). Compute RSSCV/n — o? for each data set for
h € {0.1,0.01}. Does it appear that all of the 10 RSSCV/n—o? val-
ues are close to the IMSE value for each h € {0.1,0.01} from Exercise
1?7

(c) For m: an estimator of m, if we define
IMSE* = E / (1 (u) — m(u))? fx (u)du,

where fx is the density for the beta distribution beta(2,2). When
h = 0.1, does it appear that all of the 10 RSSCV/n — o? values from
Part (b) are close to the IMSE* value? You may approximate the
IMSE* value using the average over 100 weighted ISE values.

Note. The R command rbeta(n, 2,2) generates n random numbers
from beta(2,2) .

e Exercise 3. Let N = 100. Simulated N data sets from (1) with m(z) =
sin(20zx), n = 1000, X1, ..., X,, are IID Uniform(0,1), €1, ..., &, are IID
N(0,0?) errors with o = 0.05. Compute the IMSE using (3) for the kernel
regression estimator with the bandwidth chosen using leave-one-out cross
validation, where the bandwidth A is in {0.005, 0.01, 0.1}.



