Densities with respect to measures

1 Introduction to measures and integration

- Reference: Mathematic Statistics by Shao, Jun (2nd Ed.)
- σ -fields
 - σ -field (Definition 1.1 in Section 1.1.1)
 - $\sigma(\mathcal{C})$: the σ -field generated by a collection \mathcal{C} (the smallest σ -field containing \mathcal{C})
 - Borel σ -field $\mathcal{B}(\Omega)$: the σ -field generated by open sets in Ω
- Measure related definitions
 - Measurable space
 - Measure (Definition 1.2 in Section 1.1.1)
 - Example. δ_c measure $(c \in R)$. For $A \in \mathcal{B}(R)$,

$$\delta_c(A) = \begin{cases} 1 & \text{if } c \in A \\ 0 & \text{if } c \notin A \end{cases}$$

- Uniqueness
 - Theorem 10.3 (Billingsley 1986) Suppose that μ_1 and μ_2 are measures on $\sigma(\mathcal{P})$, where \mathcal{P} is a π -system, and suppose they are σ -finite on \mathcal{P} . If μ_1 and μ_2 agree on \mathcal{P} , then they agree on $\sigma(\mathcal{P})$.
 - Definition. Suppose that C is a collection of some subsets of Ω . C is π -system if it is closed under finite intersections.
 - Definition. Suppose that C is a collection of some subsets of Ω . A measure μ is σ -finite on C if there exists $\{A_k\}$: a sequence of sets in C such that

 $\Omega = \bigcup_k A_k$ and $\mu(A_k) < \infty$ for all k.

- Lebesgue measure
- Product measure
- Some properties of a measure
 - Monotonicity
 - Subadditivity
 - Continuity
- Measurable functions.
 - Definition of a measurable function (Definition 1.3 in Section 1.1.2).

- Random variable. A random variable on a probability space (Ω, \mathcal{F}, P) is a measurable function from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$.
- Distribution of X: the probability measure $P_X = P \circ X^{-1}$ on $(R, \mathcal{B}(R))$.
- Indicator function I_A is measurable from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$ if $A \in \mathcal{F}$.
- Suppose that a function $f: \mathbb{R}^m \to \mathbb{R}^k$ is continuous on \mathbb{R}^m . Then f is measurable from $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ to $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k)$.
- Suppose that f_1, \ldots, f_k are measurable from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$, let $f = (f_1, \ldots, f_k)$, then f is measurable from (Ω, \mathcal{F}) to $(R^k, \mathcal{B}(R^k))$.
- Compositions of measurable functions are measurable (Proposition 1.4 (iv))
- Approximation property.

Fact 1 Suppose that f is measurable from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$, then (i) and (ii) hold.

- (i) Suppose that $f \ge 0$. Then there exists $\{f_n\}$: a sequence of real-valued simple functions such that $0 \le f_n \le f_{n+1} < \infty$ and $\lim_{n\to\infty} f_n = f$.
- (ii) Let

$$f^+(w) = \begin{cases} f(w) & \text{if } f(w) > 0; \\ 0 & \text{otherwise,} \end{cases}$$

and

$$f^{-}(w) = \begin{cases} -f(w) & \text{if } f(w) < 0; \\ 0 & \text{otherwise.} \end{cases}$$

Then $f = f^+ - f^-$ and f^+ and f^- are measurable from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$.

Note. In Fact 1, $(R, \mathcal{B}(R))$ can be replaced by $(\overline{R}, \overline{\mathcal{B}})$, where $\overline{R} = R \cup \{\infty, -\infty\}$ and $\overline{\mathcal{B}} = \sigma(\mathcal{B}(R) \cup \{\{\infty\}, \{-\infty\}\})$.

- Definition of integration. (Definition 1.4 in Section 1.2.1)
 - Integrable functions.
 - Integration over a set.
 - Example 1. $\Omega = \{1, 2, 3, 4, 5, 6\}$. $X(\omega) = \omega$. P: measure on $(\Omega, 2^{\Omega})$ such that $P(\{\omega\}) = 1/6$ for $\omega \in \Omega$. Find $\int X dP$.
- Basic properties of integration
 - Linearity (Proposition 1.5 in Section 1.2.1)
 - Monotonicity (Proposition 1.6(i) in Section 1.2.1)

– If $f \ge 0$ ν -a.e. and $\int f d\nu = 0$, then f = 0 ν -a.e. (Proposition 1.6(ii) in Section 1.2.1).

$$-\nu(A) = 0$$
 implies that $\int_A f d\nu = 0$.

- Limits of integrals (Theorem 1.1 and Example 1.8 in Section 1.2.1)
 - Dominated convergence theorem
 - Monotone convergence theorem
- Fubini's theorem (Theorem 1.3 in Section 1.2.1)
- Suppose that f is Riemann integrable on a finite interval I with endpoints a and b, where a < b. Let λ be the Lebesgue measure on $(R, \mathcal{B}(R))$. Then $\int_{I} f d\lambda = \int_{a}^{b} f(x) dx$.
- Suppose that Ω is a countable set and ν is a measure on $(\Omega, 2^{\Omega})$. Then for a nonnegative f that is measurable from $(\Omega, 2^{\Omega})$ to $(R, \mathcal{B}(R))$,

$$\int f d\nu = \sum_{\omega \in \Omega} f(\omega)\nu(\{\omega\}).$$

• Change of Variable (Theorem 1.2 in Section 1.2.1)

$$\int (g \circ f) d\mu = \int g d(\mu \circ f^{-1}).$$

Example. For a random variable X on (Ω, \mathcal{F}, P) ,

$$E(X) = \int X(\omega)dP(\omega) = \int xdP_X(x),$$

where $P_X = P \circ X^{-1}$ is the distribution of X.

- Absolute continuity (Equation (1.19) in Section 1.2.2)
- Radon-Nikodym Theorem (Theorem 1.4 in Section 1.2.2).
- For a random variable X with distirbution P_X , if P_X has a density f with respect to some measure ν , then we say that X has a density f with respect to ν .
- Example 2. Suppose that $Z \sim N(0, 1)$ and

$$X = \begin{cases} Z & \text{if } Z \ge 5; \\ 5 & \text{if } Z < 5. \end{cases}$$

Then X has a density with respect to $\lambda + \delta_5$, where λ is the Lebesgue measure on $(R, \mathcal{B}(R))$.

• Calculus with Radon Nikodym derivatives (Proposition 1.7 (i)-(iii))

- For $f \ge 0$,

$$\int f\mu = \int f \frac{d\mu}{d\nu} d\nu$$

- sum of a density of μ_1 and a density of μ_2 (w.r.t the same measure) is a density of $(\mu_1 + \mu_2)$.
- Chain rule
- Example 3. Suppose that X is a random variable with a Lebesgue density f_X , and $f_X(x) = 0$ for $x \le 0$. Let $Y = X^2$ and let

$$g(y) = \frac{f_X(\sqrt{y})}{2\sqrt{y}} I_{(0,\infty)}(y)$$

for $y \in R$. Then g is a Lebesgue density of Y.

Note. Let λ be the Lebesgue measure on $(R, \mathcal{B}(R))$. To verify that g is a Lebesgue density of Y is to verify that

$$\int_{-\infty}^{t} g(x)d\lambda(x) = P(Y \le t) \tag{1}$$

for $t \in R$. For t > 0,

$$\int_{-\infty}^t g(y) d\lambda(y)$$

2 Conditional expectations and conditional distributions

- Definition of $E(X|\mathcal{A})$ (Definition 1.6 in Section 1.4.1).
 - For a nonnegative random variable X, $E(X|\mathcal{A})$ is a Radon-Nikodym derivative.
- From now on, whenever we write $E(X|\mathcal{A})$, it is assumed that $E|X| < \infty$.
- Suppose that Y is a random vector of dimension m on a probability space (Ω, \mathcal{F}, P) , then $\sigma(Y)$ is the σ -field $\{Y^{-1}(B) : B \in B(\mathbb{R}^m)\}$.

 $- E(X|Y) = E(X|\sigma(Y)).$

- Fact 2 Suppose that Y is a random vector on a probability space (Ω, \mathcal{F}, P) . Suppose that Z is a random variable on (Ω, \mathcal{F}, P) such that Z is measurable from $(\Omega, \sigma(Y)$ to $(R, \mathcal{B}(R))$, then Z = h(Y) for some function h.
- Example 4. Suppose that $\Omega = \{1, 2, 3, 4\}$. *P* is a measure on $(\Omega, 2^{\Omega})$ such that $P(\{k\}) = 1/4$ for $k \in \Omega$. Suppose that X(k) = k for $k \in \Omega$ and Y(1) = 4, Y(2) = 5, Y(3) = Y(4) = 6. Find E(X|Y).

- Given a σ -field $\mathcal{A} \Leftrightarrow$ given the information that whether A occurs for every $A \in \mathcal{A}$.
- Some facts following from the definition of a conditional expection.
 - Suppose that X is measurable from (Ω, \mathcal{A}_0) to (R, \mathcal{B}) , where \mathcal{A}_0 is a sub- σ -field of \mathcal{A} . Then $E(X|\mathcal{A}) = X$.

- If
$$\mathcal{A} = \{\emptyset, \Omega\}$$
, then $E(X|\mathcal{A}) = E(X)$.

- Properties of conditional expectations (Proposition 1.10 or Proposition 1.12 in the first edition).
- $E(X|\mathcal{A})$ is the "best guess" of X given the information of occurrences of events in \mathcal{A} in the following sense

$$\int (X - E(X|\mathcal{A}))^2 dP \le \int (X - Y)^2 dP$$
(2)

for all Y: measurable from (Ω, \mathcal{A}) to (R, \mathcal{B}) .

Fact 3 Suppose that X is a random variable on (Ω, \mathcal{F}, P) with $E|X| < \infty$, and \mathcal{A}_1 and \mathcal{A}_2 are sub- σ -fields of \mathcal{F} . If $\sigma(\sigma(X) \cup \mathcal{A}_1)$ and \mathcal{A}_2 are independent, then

$$E(X|\sigma(\mathcal{A}_1 \cup \mathcal{A}_2)) = E(X|\mathcal{A}_1)$$
 a.s.

The proof of Fact 3 is based on the result that

$$\int_{A_1 \cap A_2} E(X|\mathcal{A}_1) dP = \int_{A_1 \cap A_2} X dP \text{ for } A_1 \in \mathcal{A}_1 \text{ and } A_2 \in \mathcal{A}_2,$$

which can be established from the following fact:

Fact 4 Suppose that X is a nonnegative random variable on (Ω, \mathcal{F}, P) and \mathcal{A}_2 is a sub- σ -field of \mathcal{F} . If \mathcal{A}_2 is independent of $\sigma(X)$, then for $\mathcal{A}_2 \in \mathcal{A}_2$,

$$E(XI_{A_2}) = P(A_2)E(X).$$

The proof of Fact 4 is based on Proposition 1.10 (vii).

Special cases of Fact 3:

- Proposition 1.11 in Section 1.4.2 (Proposition 1.14 in the first edition). Note: $\sigma((Y_1, Y_2)) = \sigma(\sigma(Y_1) \cup \sigma(Y_2)).$
- Suppose that X is a random variable on (Ω, \mathcal{F}, P) with $E|X| < \infty$ and Y is a measurable function from (Ω, \mathcal{F}) to a measurable space. Suppose that $\sigma(X)$ and $\sigma(Y)$ are independent. Then

$$E(X|Y) = E(X)$$
 a.s

- Conditional distributions are random probability measures.
- Definition of a random probability measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Suppose that (Ω, \mathcal{F}, P) is a probability space and μ is a function on $\mathcal{B}(\mathbb{R}^n) \times \Omega$ satisfying (i) and (ii):
 - (i) For every $\omega \in \Omega$, $\mu(\cdot, \omega)$ is a probability measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.
 - (ii) For every $B \in \mathcal{B}(\mathbb{R}^n)$, let $X(\omega) = \mu(B, \omega)$. Then X is a random variable on (Ω, \mathcal{F}, P) .

Then μ is a random probability measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ with respect to the probability space (Ω, \mathcal{F}, P) .

• Existence of conditional distributions (Theorem 1.7 (i); Theorem 1.7 in the first edition). Suppose that X and Y are random vectors on (Ω, \mathcal{F}, P) and take values in \mathbb{R}^n and \mathbb{R}^m respectively. Let $P_Y = P \circ Y^{-1}$ be the distribution of Y. Then there exists a random probability measure μ on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ with respect to the probability space $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m), P_Y)$ such that

$$P((X,Y) \in B \times C) = \int_C \mu(B,y) dP_Y(y) \text{ for all } B \in \mathcal{B}(\mathbb{R}^n), C \in \mathcal{B}(\mathbb{R}^m).$$
(3)

 $\{\mu(\cdot, y) : y \in \mathbb{R}^m\}$ is called a version of the conditional distribution of X given Y. We denote $\mu(\cdot, y)$ by $P_{X|Y}(\cdot|y)$ or $P_{X|Y=y}$.

• Conditional expectation as expectation with respect to conditional distribution. Suppose that g is measurable from $(\mathbb{R}^n \times \mathbb{R}^m, \mathcal{B}(\mathbb{R}^{n+m}))$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Suppose that g is nonnegative. Let

$$h(y) = \int g(x, y) dP_{X|Y=y}(x)$$

for $y \in \mathbb{R}^m$, then E(g(X,Y)|Y) = h(Y). Note that if $E(|g(X,Y)|) < \infty$, then h can be defined P_Y -a.e and we still have E(g(X,Y)|Y) = h(Y).

• Suppose that X and Y are random vectors of dimensions n and m respectively. Suppose that (X, Y) has a density $f_{X,Y}$ with respect to a product measure $\mu \times \nu$, where μ and ν are measures on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ and $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ respectively. Let

$$f_Y(y) = \int f_{X,Y}(x,y) d\mu(x)$$

for $y \in \mathbb{R}^m$, then f_Y is the PDF of Y with respect to ν . Let $\mathbb{R}_Y = \{y \in \mathbb{R}^m : f_Y(y) > 0\}$. For $y \in \mathbb{R}_Y$, define

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

for $x \in \mathbb{R}^n$. For $y \in \mathbb{R}_Y$, let

$$\mu(A, y) = \int_A f_{X|Y=y}(x) d\mu(x)$$

for $A \in \mathcal{B}(\mathbb{R}^n)$, then (3) holds and $\{\mu(\cdot, y) : y \in \mathbb{R}_Y\}$ is a version of the conditional distribution X given Y. Thus $\{f_{X|Y=y} : y \in \mathbb{R}_Y\}$ is called a version of the conditional density of X given Y with respect to μ .