
Densities with respect to measures

1 Introduction to measures and integration

• Reference: Mathematic Statistics by Shao, Jun (2nd Ed.)

• σ-fields

– σ-field (Definition 1.1 in Section 1.1.1)

– σ(C): the σ-field generated by a collection C (the smallest σ-field
containing C)

– Borel σ-field B(Ω): the σ-field generated by open sets in Ω

• Measure related definitions

– Measurable space

– Measure (Definition 1.2 in Section 1.1.1)

– Example. δc measure (c ∈ R). For A ∈ B(R),

δc(A) =

{
1 if c ∈ A
0 if c ̸∈ A

• Uniqueness

– Theorem 10.3 (Billingsley 1986) Suppose that µ1 and µ2 are measures
on σ(P), where P is a π-system, and suppose they are σ-finite on P.
If µ1 and µ2 agree on P, then they agree on σ(P).

– Definition. Suppose that C is a collection of some subsets of Ω. C is
π-system if it is closed under finite intersections.

– Definition. Suppose that C is a collection of some subsets of Ω. A
measure µ is σ-finite on C if there exists {Ak}: a sequence of sets in
C such that

Ω = ∪kAk and µ(Ak) < ∞ for all k.

– Lebesgue measure

– Product measure

• Some properties of a measure

– Monotonicity

– Subadditivity

– Continuity

• Measurable functions.

– Definition of a measurable function (Definition 1.3 in Section 1.1.2).
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– Random variable. A random variable on a probability space (Ω,F , P )
is a measurable function from (Ω,F) to (R,B(R)).

– Distribution ofX: the probability measure PX = P◦X−1 on (R,B(R)).

• Indicator function IA is measurable from (Ω,F) to (R,B(R)) if A ∈ F .

• Suppose that a function f : Rm → Rk is continuous on Rm. Then f is
measurable from (Rm,B(Rm)) to (Rk,B(Rk).

• Suppose that f1, . . ., fk are measurable from (Ω,F) to (R,B(R)), let
f = (f1, . . . , fk), then f is measurable from (Ω,F) to (Rk,B(Rk)).

• Compositions of measurable functions are measurable (Proposition 1.4
(iv))

• Approximation property.

Fact 1 Suppose that f is measurable from (Ω,F) to (R,B(R)), then (i)
and (ii) hold.

(i) Suppose that f ≥ 0. Then there exists {fn}: a sequence of real-
valued simple functions such that 0 ≤ fn ≤ fn+1 < ∞ and limn→∞ fn =
f .

(ii) Let

f+(w) =

{
f(w) if f(w) > 0;
0 otherwise,

and

f−(w) =

{
−f(w) if f(w) < 0;
0 otherwise.

Then f = f+ − f− and f+ and f− are measurable from (Ω,F) to
(R,B(R)).

Note. In Fact 1, (R,B(R)) can be replaced by (R,B), where R = R ∪
{∞,−∞} and B = σ(B(R) ∪ {{∞}, {−∞}}).

• Definition of integration. (Definition 1.4 in Section 1.2.1)

– Integrable functions.

– Integration over a set.

– Example 1. Ω = {1, 2, 3, 4, 5, 6}. X(ω) = ω. P : measure on (Ω, 2Ω)
such that P ({ω}) = 1/6 for ω ∈ Ω. Find

∫
XdP .

• Basic properties of integration

– Linearity (Proposition 1.5 in Section 1.2.1)

– Monotonicity (Proposition 1.6(i) in Section 1.2.1)
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– If f ≥ 0 ν-a.e. and
∫
fdν = 0, then f = 0 ν-a.e. (Proposition 1.6(ii)

in Section 1.2.1).

– ν(A) = 0 implies that
∫
A
fdν = 0.

• Limits of integrals (Theorem 1.1 and Example 1.8 in Section 1.2.1)

– Dominated convergence theorem

– Monotone convergence theorem

• Fubini’s theorem (Theorem 1.3 in Section 1.2.1)

• Suppose that f is Riemann integrable on a finite interval I with endpoints
a and b, where a < b. Let λ be the Lebesgue measure on (R,B(R)). Then∫
I
fdλ =

∫ b

a
f(x)dx.

• Suppose that Ω is a countable set and ν is a measure on (Ω, 2Ω). Then
for a nonnegative f that is measurable from (Ω, 2Ω) to (R,B(R)),∫

fdν =
∑
ω∈Ω

f(ω)ν({ω}).

• Change of Variable (Theorem 1.2 in Section 1.2.1)∫
(g ◦ f)dµ =

∫
gd(µ ◦ f−1).

Example. For a random variable X on (Ω,F , P ),

E(X) =

∫
X(ω)dP (ω) =

∫
xdPX(x),

where PX = P ◦X−1 is the distribution of X.

• Absolute continuity (Equation (1.19) in Section 1.2.2)

• Radon-Nikodym Theorem (Theorem 1.4 in Section 1.2.2).

• For a random variable X with distirbution PX , if PX has a density f
with respect to some measure ν, then we say that X has a density f with
respect to ν.

• Example 2. Suppose that Z ∼ N(0, 1) and

X =

{
Z if Z ≥ 5;
5 if Z < 5.

Then X has a density with respect to λ + δ5, where λ is the Lebesgue
measure on (R,B(R)).

• Calculus with Radon Nikodym derivatives (Proposition 1.7 (i)-(iii))
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– For f ≥ 0, ∫
fµ =

∫
f
dµ

dν
dν.

– sum of a density of µ1 and a density of µ2 (w.r.t the same measure)
is a density of (µ1 + µ2).

– Chain rule

• Example 3. Suppose that X is a random variable with a Lebesgue density
fX , and fX(x) = 0 for x ≤ 0. Let Y = X2 and let

g(y) =
fX(

√
y)

2
√
y

I(0,∞)(y)

for y ∈ R. Then g is a Lebesgue density of Y .

Note. Let λ be the Lebesgue measure on (R,B(R)). To verifty that g is a
Lebesgue density of Y is to verifty that∫ t

−∞
g(x)dλ(x) = P (Y ≤ t) (1)

for t ∈ R. For t > 0, ∫ t

−∞
g(y)dλ(y)

2 Conditional expectations and conditional distributions

• Definition of E(X|A) (Definition 1.6 in Section 1.4.1).

– For a nonnegative random variable X, E(X|A) is a Radon-Nikodym
derivative.

• From now on, whenever we write E(X|A), it is assumed that E|X| < ∞.

• Suppose that Y is a random vector of dimension m on a probability space
(Ω,F , P ), then σ(Y ) is the σ-field {Y −1(B) : B ∈ B(Rm)}.

– E(X|Y ) = E(X|σ(Y )).

• Fact 2 Suppose that Y is a random vector on a probability space (Ω,F , P ).
Suppose that Z is a random variable on (Ω,F , P ) such that Z is measur-
able from (Ω, σ(Y ) to (R,B(R)), then Z = h(Y ) for some function h.

• Example 4. Suppose that Ω = {1, 2, 3, 4}. P is a measure on (Ω, 2Ω)
such that P ({k}) = 1/4 for k ∈ Ω. Suppose that X(k) = k for k ∈ Ω and
Y (1) = 4, Y (2) = 5, Y (3) = Y (4) = 6. Find E(X|Y ).
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• Given a σ-field A ⇔ given the information that whether A occurs for every
A ∈ A.

• Some facts following from the definition of a conditional expection.

– Suppose that X is measurable from (Ω,A0) to (R,B), where A0 is a
sub-σ-field of A. Then E(X|A) = X.

– If A = {∅,Ω}, then E(X|A) = E(X).

• Properties of conditional expectations (Proposition 1.10 or Proposition
1.12 in the first edition).

• E(X|A) is the “best guess” of X given the information of occurrences of
events in A in the following sense∫

(X − E(X|A))2dP ≤
∫
(X − Y )2dP (2)

for all Y : measurable from (Ω,A) to (R,B).

Fact 3 Suppose that X is a random variable on (Ω,F , P ) with E|X| <
∞, and A1 and A2 are sub-σ-fields of F . If σ(σ(X) ∪ A1) and A2 are
independent, then

E(X|σ(A1 ∪ A2)) = E(X|A1) a.s.

The proof of Fact 3 is based on the result that∫
A1∩A2

E(X|A1)dP =

∫
A1∩A2

XdP for A1 ∈ A1 and A2 ∈ A2,

which can be established from the following fact:

Fact 4 Suppose that X is a nonnegative random variable on (Ω,F , P ) and
A2 is a sub-σ-field of F . If A2 is independent of σ(X), then for A2 ∈ A2,

E(XIA2) = P (A2)E(X).

The proof of Fact 4 is based on Proposition 1.10 (vii).

Special cases of Fact 3:

– Proposition 1.11 in Section 1.4.2 (Proposition 1.14 in the first edi-
tion). Note: σ((Y1, Y2)) = σ(σ(Y1) ∪ σ(Y2)).

– Suppose that X is a random variable on (Ω,F , P ) with E|X| < ∞
and Y is a measurable function from (Ω,F) to a measurable space.
Suppose that σ(X) and σ(Y ) are independent. Then

E(X|Y ) = E(X) a.s.
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• Conditional distributions are random probability measures.

• Definition of a random probability measure on (Rn,B(Rn)). Suppose that
(Ω,F , P ) is a probability space and µ is a function on B(Rn)×Ω satisfying
(i) and (ii):

(i) For every ω ∈ Ω, µ(·, ω) is a probability measure on (Rn,B(Rn)).

(ii) For every B ∈ B(Rn), let X(ω) = µ(B,ω). Then X is a random
variable on (Ω,F , P ).

Then µ is a random probability measure on (Rn,B(Rn)) with respect to
the probability space (Ω,F , P ).

• Existence of conditional distributions (Theorem 1.7 (i); Theorem 1.7 in
the first edition). Suppose that X and Y are random vectors on (Ω,F , P )
and take values in Rn and Rm respectively. Let PY = P ◦ Y −1 be the
distribution of Y . Then there exists a random probability measure µ on
(Rn,B(Rn)) with respect to the probability space (Rm,B(Rm), PY ) such
that

P ((X,Y ) ∈ B × C) =

∫
C

µ(B, y)dPY (y) for all B ∈ B(Rn), C ∈ B(Rm).

(3)
{µ(·, y) : y ∈ Rm} is called a version of the conditional distribution of X
given Y . We denote µ(·, y) by PX|Y (·|y) or PX|Y=y.

• Conditional expectation as expectation with respect to conditional dis-
tribution. Suppose that g is measurable from (Rn × Rm,B(Rn+m)) to
(R,B(R)). Suppose that g is nonnegative. Let

h(y) =

∫
g(x, y)dPX|Y=y(x)

for y ∈ Rm, then E(g(X,Y )|Y ) = h(Y ). Note that if E(|g(X,Y )|) < ∞,
then h can be defined PY -a.e and we still have E(g(X,Y )|Y ) = h(Y ).

• Suppose that X and Y are random vectors of dimensions n and m re-
spectively. Suppose that (X,Y ) has a density fX,Y with respect to a
product measure µ × ν, where µ and ν are measures on (Rn,B(Rn) and
(Rm,B(Rm)) respectively. Let

fY (y) =

∫
fX,Y (x, y)dµ(x)

for y ∈ Rm, then fY is the PDF of Y with respect to ν. Let RY = {y ∈
Rm : fY (y) > 0}. For y ∈ RY , define

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
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for x ∈ Rn. For y ∈ RY , let

µ(A, y) =

∫
A

fX|Y=y(x)dµ(x)

for A ∈ B(Rn), then (3) holds and {µ(·, y) : y ∈ RY } is a version of the
conditional distribution X given Y . Thus {fX|Y=y : y ∈ RY } is called a
version of the conditional density of X given Y with respect to µ.
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