Densities with respect to measures

1 Introduction to measures and integration

o Reference: Mathematic Statistics by Shao, Jun (2nd Ed.)
o o-fields

— o-field (Definition 1.1 in Section 1.1.1)

— o(C): the o-field generated by a collection C (the smallest o-field
containing C)

— Borel o-field B(Q2): the o-field generated by open sets in 2
e Measure related definitions

— Measurable space
— Measure (Definition 1.2 in Section 1.1.1)
— Example. J, measure (¢ € R). For A € B(R),

1 ifceA
6C(A)_{ 0 ifcgA

e Uniqueness

— Theorem 10.3 (Billingsley 1986) Suppose that uq and uo are measures
on o(P), where P is a m-system, and suppose they are o-finite on P.
If 111 and po agree on P, then they agree on o(P).

— Definition. Suppose that C is a collection of some subsets of Q. C is
m-system if it is closed under finite intersections.

— Definition. Suppose that C is a collection of some subsets of 2. A
measure p is o-finite on C if there exists {Ax}: a sequence of sets in
C such that
Q = U A, and p(Ag) < oo for all k.

— Lebesgue measure

— Product measure
e Some properties of a measure

— Monotonicity
— Subadditivity
— Continuity

e Measurable functions.

— Definition of a measurable function (Definition 1.3 in Section 1.1.2).



— Random variable. A random variable on a probability space (2, F, P)
is a measurable function from (9, F) to (R, B(R)).

— Distribution of X: the probability measure Py = PoX ! on (R, B(R)).
Indicator function I,4 is measurable from (€2, F) to (R, B(R)) if A € F.

Suppose that a function f: R™ — R* is continuous on R™. Then f is
measurable from (R™, B(R™)) to (RF, B(R¥).

Suppose that fi, ..., fr are measurable from (Q,F) to (R,B(R)), let
f=1(f1,---, fx), then f is measurable from (Q, F) to (R¥, B(R¥)).

Compositions of measurable functions are measurable (Proposition 1.4
(iv))

Approximation property.

Fact 1 Suppose that f is measurable from (2, F) to (R,B(R)), then (i)
and (ii) hold.

(i) Suppose that f > 0. Then there exists {f,}: a sequence of real-
valued simple functions such that 0 < f,, < fr,4+1 < oo and lim,, oo fr =

f
(ii) Let
fH(w) = { g(w) if f(w) > 0;

otherwise,

and
f— (’LU) — { (;f(w) if f(w) < 0;

otherwise.
Then f = f* — f~ and f* and f~ are measurable from (Q,F) to
(R, B(R)).
Note. In Fact 1, (R,B(R)) can be replaced by (R, B), where R = R U
{oo, —oo} and B = o(B(R) U {{oo}, {—o0}}).
Definition of integration. (Definition 1.4 in Section 1.2.1)
— Integrable functions.

— Integration over a set.

— Example 1. Q= {1,2,3,4,5,6}. X(w) = w. P: measure on (£,2%)
such that P({w}) = 1/6 for w € Q. Find [ XdP.

Basic properties of integration

— Linearity (Proposition 1.5 in Section 1.2.1)
— Monotonicity (Proposition 1.6(i) in Section 1.2.1)



—If f > 0 v-ae. and [ fdv =0, then f =0 v-a.e. (Proposition 1.6(ii)
in Section 1.2.1).

~ v(A) = 0 implies that [, fdv = 0.
Limits of integrals (Theorem 1.1 and Example 1.8 in Section 1.2.1)

— Dominated convergence theorem

— Monotone convergence theorem
Fubini’s theorem (Theorem 1.3 in Section 1.2.1)

Suppose that f is Riemann integrable on a finite interval I with endpoints
a and b, where a < b. Let A be the Lebesgue measure on (R, B(R)). Then

Jy Fax= [ f(x)da.

Suppose that € is a countable set and v is a measure on (£,2%?). Then
for a nonnegative f that is measurable from (£2,2%) to (R, B(R)),

[ i =3 fpti).

weN

Change of Variable (Theorem 1.2 in Section 1.2.1)

L/@OfMu=i/gﬂu0f”)

Example. For a random variable X on (Q,F, P),

B(X) = [ X(@)dP(w) = [ adPx (o)

where Px = P o X! is the distribution of X.
Absolute continuity (Equation (1.19) in Section 1.2.2)
Radon-Nikodym Theorem (Theorem 1.4 in Section 1.2.2).

For a random variable X with distirbution Py, if Px has a density f
with respect to some measure v, then we say that X has a density f with
respect to v.

Example 2. Suppose that Z ~ N(0,1) and

Z it Z >5;
X{5 if Z < 5.

Then X has a density with respect to A + d5, where A is the Lebesgue
measure on (R, B(R)).

Calculus with Radon Nikodym derivatives (Proposition 1.7 (i)-(iii))



— For f >0,

[ = [ 1%L

— sum of a density of 1 and a density of us (w.r.t the same measure)
is a density of (u1 + p2).

— Chain rule

Example 3. Suppose that X is a random variable with a Lebesgue density
fx,and fx(x) =0 for z <0. Let Y = X2 and let

for y € R. Then g is a Lebesgue density of Y.

Note. Let A be the Lebesgue measure on (R, B(R)). To verifty that g is a
Lebesgue density of Y is to verifty that

9(y)

/ g(2)dA(z) = P(Y < 1) (1)

— 00

for t € R. For t > 0,

/ 9(y)dA(y)

— 00

2 Conditional expectations and conditional distributions

Definition of F(X|.A) (Definition 1.6 in Section 1.4.1).

— For a nonnegative random variable X, E(X|A) is a Radon-Nikodym
derivative.

From now on, whenever we write F(X|.A), it is assumed that F|X| < cc.

Suppose that Y is a random vector of dimension m on a probability space
(Q,F, P), then o(Y) is the o-field {Y~}(B) : B € B(R™)}.

~ B(X|Y) = E(X|o(Y)).

Fact 2 Suppose that Y is a random vector on a probability space (€2, F, P).
Suppose that Z is a random variable on (2, F, P) such that Z is measur-
able from (Q,0(Y) to (R, B(R)), then Z = h(Y") for some function h.

Example 4. Suppose that Q = {1,2,3,4}. P is a measure on (Q,2%)
such that P({k}) = 1/4 for k € Q. Suppose that X (k) = k for k € Q and
Y(1) =4, Y(2) =5, Y(3) = Y(4) = 6. Find E(X|Y).



Given a o-field A < given the information that whether A occurs for every
Ac A

Some facts following from the definition of a conditional expection.

— Suppose that X is measurable from (€, Ag) to (R, B), where Ay is a
sub-o-field of A. Then E(X|A) = X.

- If A={0,Q}, then E(X|A) = E(X).

Properties of conditional expectations (Proposition 1.10 or Proposition
1.12 in the first edition).

E(X|A) is the “best guess” of X given the information of occurrences of
events in A in the following sense
/(X — B(X|A))%dP < /(X —Y)%dP (2)

for all Y: measurable from (£,.4) to (R, B).

Fact 3 Suppose that X is a random variable on (2, F, P) with E|X| <
00, and A; and Ay are sub-o-fields of F. If o(0(X) U A;) and A,y are
independent, then

E(X|O‘(.A1 U Ag)) = E(X|.A1) a.s.
The proof of Fact 3 is based on the result that

/ E(X|.A1)dp = / XdP for A; € Ay and Ay € AQ,
Ai1NAs A1NAs
which can be established from the following fact:

Fact 4 Suppose that X is a nonnegative random variable on (Q, F, P) and
Aj is a sub-o-field of F. If As is independent of o(X), then for Ay € As,

E(X14,) = P(A2) E(X).

The proof of Fact 4 is based on Proposition 1.10 (vii).
Special cases of Fact 3:
— Proposition 1.11 in Section 1.4.2 (Proposition 1.14 in the first edi-
tion). Note: o((Y1,Y2)) = o(a(Y1) Ua(Y2)).

— Suppose that X is a random variable on (Q, F, P) with F|X| < oo
and Y is a measurable function from (2, F) to a measurable space.
Suppose that o(X) and o(Y") are independent. Then

E(X|Y)=E(X) as.



Conditional distributions are random probability measures.

Definition of a random probability measure on (R™, B(R™)). Suppose that
(Q, F, P) is a probability space and p is a function on B(R"™) x ) satisfying
(i) and (ii):

(i) For every w € , u(-,w) is a probability measure on (R™, B(R")).

(ii) For every B € B(R"), let X(w) = pu(B,w). Then X is a random
variable on (2, F, P).

Then p is a random probability measure on (R™, B(R™)) with respect to
the probability space (2, F, P).

Existence of conditional distributions (Theorem 1.7 (i); Theorem 1.7 in
the first edition). Suppose that X and Y are random vectors on (2, F, P)
and take values in R™ and R™ respectively. Let Py = P oY ! be the
distribution of Y. Then there exists a random probability measure p on
(R"™,B(R™)) with respect to the probability space (R™, B(R™), Py) such
that

P(X,Y)eBx(C)= / w(B,y)dPy (y) for all B € B(R"),C € B(R™).

c
(3)
{n(,y) : y € R™} is called a version of the conditional distribution of X
given Y. We denote u(-,y) by Pxy(-|y) or Px|y—y-

Conditional expectation as expectation with respect to conditional dis-
tribution. Suppose that g is measurable from (R" x R™,B(R"™™)) to
(R,B(R)). Suppose that g is nonnegative. Let

h(y) = /9($7y)dPX|Y:y($)

for y € R™, then E(g(X,Y)|Y) = h(Y). Note that if E(|g(X,Y)]) < oo,
then h can be defined Py-a.e and we still have E(g(X,Y)|Y) = h(Y).

Suppose that X and Y are random vectors of dimensions n and m re-
spectively. Suppose that (X,Y) has a density fxy with respect to a
product measure g X v, where p and v are measures on (R™, B(R") and
(R™,B(R™)) respectively. Let

Ty (y) :/fX,Y(%y)dﬂ(f)

for y € R™, then fy is the PDF of Y with respect to v. Let Ry = {y €
R™: fy(y) > 0}. For y € Ry, define

fxy=y(z) = foi:((Z) v)



for x € R™. For y € Ry, let
p(A) = [ Frv—y(a)duta)
for A € B(R™), then (3) holds and {u(-,y) : y € Ry} is a version of the

conditional distribution X given Y. Thus {fx|y—, : ¥ € Ry} is called a
version of the conditional density of X given Y with respect to p.



