Homework problems

Part I problems

- 1. Suppose that A, B are subsets of a space Ω . Let \mathcal{F} be the smallest σ -fied on Ω that contains A and B. List all the sets in \mathcal{F} . You may write down your answer directly without justification.
- 2. Suppose that \mathcal{F} is a σ -field on Ω and μ is a measure on (Ω, \mathcal{F}) . Suppose that $\{A_n\}_{n=1}^{\infty}$ is an increasing sequences of sets in \mathcal{F} . Show that

$$\mu\left(\cup_{n=1}^{\infty}A_n\right) = \lim_{n \to \infty}\mu(A_n).$$

3. Suppose that (Ω, \mathcal{G}) and (Λ, \mathcal{A}) are measurable spaces, and $f: \Omega \to \Lambda$ is a function. Let

$$\mathcal{F} = \left\{ A \in \mathcal{A} : f^{-1}(A) \in \mathcal{G} \right\}.$$

Show that \mathcal{F} is a σ -field on Λ .

Remark. We can apply the result in Problem 3 with $(\Omega, \mathcal{G}) = (\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ and $(\Lambda, \mathcal{A}) = (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ to derive the following result.

Fact 1 For a function $f: \mathbb{R}^m \to \mathbb{R}^k$ that is continuous on \mathbb{R}^m , f is measurable from $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ to $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$.

- 4. Suppose that (Ω, \mathcal{F}) , (Λ, \mathcal{G}) , and (Δ, \mathcal{H}) are measurable spaces, and f and g are two functions such that f is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and g is measurable from (Λ, \mathcal{G}) to (Δ, \mathcal{H}) . Show that $g \circ f$ is measurable from (Ω, \mathcal{F}) to (Δ, \mathcal{H}) .
- 5. Suppose that μ_1 , μ_2 and ν are measures on the same measurable space, and μ_1 and μ_2 are absolutely continuous with respect to ν . Show that

$$\frac{d(\mu_1+\mu_2)}{d\nu} = \frac{d\mu_1}{d\nu} + \frac{d\mu_2}{d\nu}.$$

That is, show that

$$\frac{d\mu_1}{d\nu} + \frac{d\mu_2}{d\nu}$$

is a density of $(\mu_1 + \mu_2)$ with respect to ν .

Part II problems

6. Suppose that (Ω, \mathcal{F}) is a measurable space and f is a measurable function from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$. Suppose that $c \in R$ is a constant. Show that the function $c \cdot f$ is measurable from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$. You may make use of Fact 1 (in the remark after Problem 3) without proving it.

- 7. Suppose that (Ω, \mathcal{F}) is a measurable space and f is a measurable function from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$. Suppose that ν is a measure on (Ω, \mathcal{F}) and A is a set in \mathcal{F} such that $\nu(A) = 0$.
 - (a) Verify that if f is a simple function, then $\int_A f d\nu = 0$.
 - (b) Use the result in Part (a) to deduce that $\int_A f d\nu = 0$.
- 8. Suppose that X is a discrete random variable. Let P_X be the distribution of X.
 - (a) Suppose that X has m possible values a_1, \ldots, a_m . Let

$$\mu = \delta_{a_1} + \dots + \delta_{a_m}.$$

Find a density of P_X with respect to μ . Justify your answer.

(b) Suppose that X has possible values a_1, a_2, \ldots Define

$$\mu(A) = \sum_{i=1}^{\infty} \delta_{a_i}(A)$$

for $A \in \mathcal{B}(R)$, then it can be shown that μ is a measure on $(R, \mathcal{B}(R))$. Find a density of P_X with respect to μ . Justify your answer.

9. Suppose that $Z \sim N(0, 1)$ and

$$X = \begin{cases} Z & \text{if } 0 < Z < 1; \\ 0 & \text{if } Z \le 0; \\ 1 & \text{if } Z \ge 1. \end{cases}$$

Find a density of X (of the distribution of X) with respect to $\lambda + \delta_0 + \delta_1$, where λ is the Lebesgue measure on $(R, \mathcal{B}(R))$.

- 10. Suppose that X is a random variable and the distribution of X has a density f_X with respect to λ , where λ is the Lebesgue measure on $(R, \mathcal{B}(R))$. Let $Y = X^2$.
 - (a) Suppose that $f_X(x) = 0$ for $x \ge 0$. Let

$$g(y) = \frac{f_X(-\sqrt{y})}{2\sqrt{y}}I_{(0,\infty)}(y)$$

for $y \in R$. Show that g is a density of Y with respect to λ .

- (b) Write down a density of Y with respect to λ in general. Justify your answer.
- 11. Suppose that X is a random variable on a probability space (Ω, \mathcal{F}, P) and $E|X| < \infty$. Suppose that \mathcal{A} is a sub- σ -field of \mathcal{F} . Show that $E(kX|\mathcal{A}) = kE(X|\mathcal{A})$ for a constant k.

Part III problem

11. Do Exercise 1 at the end of the handout "Density estimation based on basis function approximation". Provide a proper initial value for the parameter *a* for optim. Turn in your R codes in a text file so that the codes can be copied and pasted to be excuted in an R environment. The handout is available at

https://stat.walkup.tw/teaching/math_stat_adv/handouts/sp_den.pdf