
Homework problems to be turned in

• Note. The total of this assignment is 60 points, so you only need to
complete a part of the problems correctly to receive full points.

1. (10 pts) Prove Theorem 3.3 (Cramér-Rao lower bound) for the multi-
variate case (k ≥ 2). Hint: find

min
c∈Rk

E

(
T (X)− g(θ)− cT

∂

∂γ
log fγ(X)

∣∣∣∣
γ=θ

)2

.

2. (25 pts) Assume the conditions in Theorem 4.17. Suppose that θ̃n is
a consistent estimator of θ and an(θ̃n − θ) = Op(1), where {an}∞n=1 is
a known sequence of positive numbers such that limn→∞ an =∞.

(a) (10 pts) Construct a sequence {δn}∞n=1 so that δn > 0 for all n,

lim
n→∞

δn = 0

and for c > 0, for ε > 0, there exists n1 such that

n > n1 ⇒ P (Bn(c) ⊂ {γ : ‖γ − θ̃n‖ ≤ δn}) ≥ 1− ε,

where Bn(c) is defined in the proof of Theorem 4.17.

(b) (15 pts) Define

Θn = {γ : ‖γ − θ̃n‖ ≤ δn} ∩ {γ : sn(γ) = 0}

for n ≥ 1, where {δn}∞n=1 is constructed in Part (a) and sn is the
score function. Let

θ̂n =

{
some θ∗ ∈ Θn if Θn 6= ∅;
θ̃n if Θn = ∅.

Show that θ̂n is a consistent estimator of θ and is asymptotically
efficient.

3. (25 pts) Suppose that X is a sample of size n and PX (the distribution
of X) belongs to a family {Pθ : θ ∈ Θ}. Suppose that there exists a
σ-finite measure ν such that Pθ has a density fθ with respect to ν for
all θ ∈ Θ. Suppose that
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(*) there exist ci > 0 and θi ∈ Θ for i ∈ {1, 2, . . .} such that Pθ � PX0

for all θ ∈ Θ, where X0 is a random vector with PDF
∑∞
i=1 cifθi

with respect to ν.

(a) (10 pts) Let S0 = {x :
∑∞
i=1 cifθi(x) > 0}. Show that Pθ(S

c
0) = 0

for all θ ∈ Θ and

dPθ
dPX0

(x) =
fθ(x)∑∞

i=1 cifθi(x)
=

fθ(x)∑∞
i=1 cifθi(x)

IS0(x)

PX0-a.e. for x ∈ Rn.

(b) (15 pts) Show that if there exist nonnegative measurable func-
tions g and h such that

fθ(x) = g(θ, T (x))h(x)

for x ∈ Rn, then T (X) is a sufficient statistic for θ.

Note that the existence of cis and θis in (*) is guaranteed by Lemma
2.1 in the text.

4. (10 pts) Suppose that G is a CDF on R and the function G−1 is defined
by

G−1(t) = inf{x : G(x) ≥ t}

for t ∈ (0, 1). Show that for t ∈ (0, 1), G(x) ≥ t if and only if x ≥
G−1(t).

5. (10 pts) Suppose that {(Xn,1, . . ., Xn,k)}∞n=1 and {(pn,1, . . ., pn,k)}∞n=1

are two sequences of random vectors and p1, . . ., pk are positive con-
stants such that for j = 1, . . ., k, Xn,j/n converges to pj in probability
as n→∞ and pn,j converges to pj in probability as n→∞. Suppose
that

k∑
j=1

(Xn,j − npn,j)2

Xn,j

converges in distribution to χ2(k − 1) as n→∞. Show that

k∑
j=1

(Xn,j − npn,j)2

npn,j

converges to χ2(k − 1) in distribution as n→∞.

2



6. (10 pts) Suppose that X1, . . ., Xn are IID random variables and X1

takes values in {1, . . . , k}. Let pj = P (X1 = j) for j ∈ {1, . . . , k}. For
i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, let

Ui,j =

{
1 if Xi = j;
0 otherwise.

For j ∈ {1, . . . , k}, let Wn,j = (
∑n
i=1 Ui,j − npj)/

√
n, then it follows

from the central limit theorem that (Wn,1, . . . ,Wn,k) converges in dis-
tribution to the normal distribution of mean (0, . . . , 0) and covariance
Σ, where Σ is the covariance matrix of (U1,1, . . . , U1,k).

(a) (5 pts) Verify that the (j, `)-th element of Σ is{
pj(1− pj) if j = `;
−pjp` otherwise.

for j, ` ∈ {1, . . . , k}.
(b) (5 pts) Let v = (

√
p1, . . . ,

√
pk)

T and let D be the diagonal matrix

whose j-th diagonal element is p
−1/2
j for j ∈ {1, . . . , k}. Verify

that
DΣD = Ik − vvT . (1)

You may verify (1) analytically or verify it numerically by com-
puting

‖DΣD − (Ik − vvT )‖2,

based on simulated (p1, . . ., pk), where for a matrix A, ‖A‖2 is
the sum of squares of all elements of A. If you choose to verify
(1) numerically, you need to provide a R function with input (p1,
. . ., pk) and output

‖DΣD − (Ik − vvT )‖2,

desribe how you generated (p1, . . ., pk) and give a summary of
your simulation results.

7. (25 pts) Suppose that X and Y are discrete random variables, X has
m possible values x1, . . ., xm and Y has k possible values y1, . . ., yk.
Suppose that (X1, Y1), . . ., (Xn, Yn) are IID observations and (X1, Y1)
has the same distribution as (X,Y ). Let

p`,j = P (X = x` and Y = yj)
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for ` ∈ {1, . . . ,m} and j ∈ {1, . . . , k}. Let

p`,· =
k∑
j=1

p`,j

for ` ∈ {1, . . . ,m} and let

p·,j =
m∑
`=1

p`,j

for j ∈ {1, . . . , k}. Then X and Y are indepdendent if and only if

p`,j = (p`,·)(p·,j)

for ` ∈ {1, . . . ,m} and j ∈ {1, . . . , k}. Consider testing

H0 : X and Y are indepdendent

versus
H1 : X and Y are not indepdendent

based on (X1, Y1), . . ., (Xn, Yn). Let λn be the likelihood ratio statis-
tic. It can be shown that the conditions in Theorem 4.16 hold except
that we have IID bivariate data instead of univariate data. Thus by
Theorem 6.6, under H0, −2 log(λn) converges in distribution to χ2(r)
as n→∞. You do not have to verify the conditions in Theorem 4.16
for this problem but be sure that you know how to do so.

(a) (5 pts) Express r as a function of m and k.

(b) (20 pts) For ` ∈ {1, . . . ,m} and j ∈ {1, . . . , k}, let

N`,j =
n∑
i=1

I(Xi = x` and Yi = yj),

where

I(Xi = x` and Yi = yj) =

{
1 if Xi = x` and Yi = yj ;
0 otherwise.

Then the chi-squared test for independence is based on the statis-
tic

Wn =
m∑
`=1

k∑
j=1

(N`,j − n(p̂`,·)(p̂·,j))
2

n(p̂`,·)(p̂·,j)
,
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where

p̂`,· =

∑k
j=1N`,j

n

for ` ∈ {1, . . . ,m} and let

p̂·,j =

∑m
`=1N`,j

n

for j ∈ {1, . . . , k}. Derive the result that under H0, Wn converges
in distribution to χ2(r) as n→∞ using the result that under H0,
−2 log(λn) converges in distribution to χ2(r) as n→∞.

8. (25 pts) Suppoe that µ = (0, 0, 0, 0)T and Σ = BTB, where

BT =


1 0 0. 0
−0.5 1 0 0

0 −0.5 1 0
0 0 −0.5 1

 .
Consider generating Y1, . . ., YN from N(µ,Σ) using three different
methods.

• Method 1. Generate Y1, . . ., YN independently, where for each
i ∈ {1, . . . , N}, generate X1, X2, X3, X4 independently from
N(0, 1) and take

Yi = BT


X1

X2

X3

X4

 .
The Y1, . . ., YN are IID and Yi ∼ N(µ,Σ).

• Method 2. Let f1 be the continuous PDF of N(µ,Σ) and let
f0 be the continuous PDF of N(µ, I4), where I4 is the 4 × 4
identity matrix. Choose N0 to be a large positive integer and
take M = N +N0. Generate {Ui}Mi=1 as follows.

(a) Generate U1 from N((0, 0, 0, 0)T , I4).

(b) For each t ∈ {1, . . ., M − 1}, suppose that U1, . . ., Ut have
been generated. Carry out Steps (i)–(iv) to obatin Ut+1:

i. Generate Z from N((0, 0, 0, 0)T , I4) independently from
(U1, . . ., Ut).

ii. Compute

β = min{0, log(f1(Z))−log(f0(Z))−[log(f1(Ut))−log(f0(Ut))]}.
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iii. Generate U∗ from U(0, 1) independently from (U1, . . .,
Ut, Z).

iv. Take

Ut+1 =

{
Z if U∗ ≤ eβ;
Ut if U∗ > eβ.

Take (Y1, . . ., YN ) = (UN0+1, . . ., UM = UN0+N ).

• Method 3. Suppose that (X1, X2, X3, X4)
T ∼ N(µ,Σ). For i ∈

{1, 2, 3, 4}, let X−i denote the vector obtained by removing Xi

from (X1, X2, X3, X4), and define

µi(X1, X2, X3, X4) = E(Xi|X−i) (2)

and
σ2i = E(Xi − E(Xi|X−i))2. (3)

Choose N0 to be a large positive integer and take M = N +N0.
Generate {Ui}Mi=1 as follows.

(a) Take U1 = (0, 0, 0, 0)T .

(b) For each t ∈ {1, . . ., M − 1}, suppose that U1, . . ., Ut have
been generated. Let (Ut,1, Ut,2, Ut,3, Ut,4)

T = Ut. Carry out
Steps (i)–(vi) to obatin Ut+1:

i. Generate IID N(0, 1) random variables ε1, ε2, ε3, ε4 so
that (ε1, ε2, ε3, ε4) is independent from (U1, . . ., Ut).

ii. Take Z1 = µ1(Ut,1, Ut,2, Ut,3, Ut,4) + σ1ε1.

iii. Take Z2 = µ2(Z1, Ut,2, Ut,3, Ut,4) + σ2ε2.

iv. Take Z3 = µ3(Z1, Z2, Ut,3, Ut,4) + σ3ε3.

v. Take Z4 = µ4(Z1, Z2, Z3, Ut,4) + σ4ε4.

vi. Take Ut+1 = (Z1, Z2, Z3, Z4)
T .

Take (Y1, . . ., YN ) to be (UN0+1, . . ., UM = UN0+N ).

Note that Method 2 is based on the Metropolis algorithm and Method
3 is based on Gibbs sampling. Let

A = [−0.5, 0.5]× [−1, 1]× [−1.5, 1.5]× [−2, 2].

We will estimate
p ≡ P (N(µ,Σ) ∈ A)

by generating Y1, . . ., YN from N(µ,Σ), and then estimate p using

p̂ ≡
∑N
t=1 IA(Yt)

N
.
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For j = 1, 2, 3, let p̂j denote the estimator p̂ when Y1, . . ., YN are
generated using Method j.

(a) (9 pts) For the (X1, X2, X3, X4) in Method 3, it is known that
E(Xi|X−i) is a linear function of X−i for i = 1, . . ., 4. De-
fine µi and σi by (2) and (3) respectively for i = 1, . . ., 4.
Write a R function with input (x1, x2, x3, x4) ∈ R4 and output
(σ21, µ1(x1, x2, x3, x4)).

(b) (8 pts) Take N0 = 100 and N = 200. For α ∈ (0, 1), propose an
approximate level α test for testing

H0 : E(p̂1) = E(p̂2) v.s. H1 : E(p̂1) 6= E(p̂2)

based on a random sample of 500 p̂1’s and a random sample of 500
p̂2’s, where the two samples are independent. Generate these two
random samples in R and carry out the proposed test. Report
the p-value based on the generated data. Can we reject H0 at
level 0.05?

(c) (8 pts) Take N0 = 100 and N = 200. For α ∈ (0, 1), propose an
approximate level α test for testing

H0 : E(p̂1) = E(p̂3) v.s. H1 : E(p̂1) 6= E(p̂3)

based on a random sample of 500 p̂1’s and a random sample of 500
p̂3’s, where the two samples are independent. Generate these two
random samples in R and carry out the proposed test. Report
the p-value based on the generated data. Can we reject H0 at
level 0.05?
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