Homework problems to be turned in

- Note. This problem file may be updated during the semester till Jan. 5 2022; more problems may be added.
- 1. Suppose that μ_1 and μ_2 are measures on a measurable space (Ω, \mathcal{F}) . Suppose that f is a nonnegative measurable function from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$. Show that

$$\int f d(\mu_1 + \mu_2) = \int f d\mu_1 + \int f d\mu_2.$$

Note that $\mu_1 + \mu_2$ is the measure μ such that $\mu(A) = \mu_1(A) + \mu_2(A)$ for $A \in \mathcal{F}$.

2. Suppose that U, Z_1 , and Z_2 are independent random variables on the probability space (Ω, \mathcal{F}, P) . Suppose that $P(U = 1) = 1 - \pi_0$ and $P(U = 2) = \pi_0, Z_1 \sim N(0, \sigma^2)$, and $P(Z_2 = 0) = 1$, where $\pi_0 \in (0, 1)$ and $\sigma > 0$ are constants. Define

$$X = \begin{cases} Z_1 & \text{if } U = 1; \\ Z_2 & \text{if } U = 2. \end{cases}$$

Find the density of X with respect to $\lambda + \delta_0$, where λ is the Lebesgue measure on $(R, \mathcal{B}(R))$ and $\delta_0(A) = I_A(0)$ for $A \in \mathcal{B}(R)$. You need to justify your answer by verifying that the integral of the density over A with respect to $\lambda + \delta_0$ is $P \circ X^{-1}(A)$ for $A \in \mathcal{B}(R)$.

3. Suppose that X is a random variable on the probability space (Ω, \mathcal{F}, P) and $E|X| < \infty$. Suppose that \mathcal{A} is a sub- σ -field of \mathcal{F} . Show that for a constant a,

$$E(aX|\mathcal{A}) = aE(X|\mathcal{A}).$$

4. Suppose that (X, Y) is a random vector on a probability space (Ω, \mathcal{F}, P) . Suppose that X takes values in

$$S_X = \{x_1, x_2, \ldots\} \subset (-\infty, \infty)$$

and Y takes values in

$$S_Y = \{y_1, y_2, \ldots\} \subset \mathbb{R}^k.$$

Suppose that $E|X| < \infty$ and P(Y = y) > 0 for all $y \in S_Y$. Define

$$h(y) = \sum_{x \in S_X} x P(X = x | Y = y)$$

for $y \in S_Y$. Show that E(X|Y) = h(Y).

5. Suppose that X and Y are random variables. Suppose that a and b are two constants and let

$$p(x) = \frac{e^{a+bx}}{1+e^{a+bx}}$$

for $x \in (-\infty, \infty)$. Let

$$f_{Y|X=x}(y) = I_{\{1\}}(y)p(x) + I_{\{0\}}(y)(1-p(x))$$

for $x, y \in (-\infty, \infty)$. Suppose that $f_{Y|X=x}$ is a version of the conditional PDF of Y given X = x with respect to $(\delta_0 + \delta_1)$ for $x \in (-\infty, \infty)$, where for $c \in (-\infty, \infty)$, δ_c denotes the measure defined by

$$\delta_c(A) = \begin{cases} 1 & \text{if } c \in A; \\ 0 & \text{if } c \notin A \end{cases}$$

for $A \in \mathcal{B}(R)$. Let λ denote the Lebesgue measure on $(R, \mathcal{B}(R))$. Suppose that the distribution of X has a PDF f_X with respect to λ . Find a version of the conditional PDF of X given Y = y with respect to λ for $y \in \{0, 1\}$.

6. Suppose that $X_n \sim Bin(n, 0.5)$ for n = 1, 2, ..., where Bin(n, 0.5) is the binomial distribution of size n and success probability p, so

$$P(X_n = x) = C_x^n p^x (1-p)^{n-x}$$

for $x \in \{0, 1, ..., n\}$. Let $Z_n = (X_n - E(X_n))/\sqrt{Var(X_n)}$ and let F_n be the CDF of Z_n and let F be the CDF of the standard normal distribution. For $w \in (0, 1)$, let

$$Y_n(w) = \inf\{x : w \le F_n(x)\}$$

and

$$Y(w) = \inf\{x : w \le F(x)\}\$$

Write R codes to plot the graphs of Y_n and Y on (0,1) for n = 50and 5000. Please turn in the R codes in a text file. The Y_n and Y are given in the proof of Theorem 25.6 (Skorohod's theorem) in the book "Probability and Measure" by Billingsley (3rd Edition) (see the file "skorohod.JPG" attached in WM5). 7. Suppose that X and Z are random vectors that take values in \mathbb{R}^k with PDFs f_X and f_Z respectively with respect to a σ -finite measure ν . Suppose that there exists h: a measurable function from $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that h > 0 ν -a.e. and

$$f_X = h f_Z.$$

Show that h is a PDF of X with respect to P_Z : the distribution of Z. Hint: apply the following result.

Fact 1 Suppose that μ and ν are two measures on (Ω, \mathcal{F}) , $\mu \ll \nu$ and ν is σ -finite. Suppose that $h \geq 0$ is measurable from (Ω, \mathcal{F}) to $(R, \mathcal{B}(R))$, then

$$\int h \frac{d\mu}{d\nu} d\nu = \int h d\mu.$$

- 8. Suppose that $\{X_n\}_{n=1}^{\infty}$, $\{Y_n\}_{n=1}^{\infty}$, $\{Z_n\}_{n=1}^{\infty}$ are sequences of random variables on the same probability space. Suppose that $X_n = O_p(1)$, $Y_n = o_p(1)$ and $Z_n = o_p(1)$. Show that $Z_n = O_p(1)$ and $X_n + Y_n = O_p(1)$.
- 9. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of independent random variables on the same probability space and the distribution of X_i is the uniform distribution on (-1 - (1/i), 1 + (1/i)). Let $S_n = \sum_{i=1}^n X_i$ for $n \ge 1$. Show that

$$\frac{S_n}{\sqrt{Var(S_n)}}$$

converges to N(0,1) in distribution as $n \to \infty$.