Proof of a special case of MCT (monotone convergence theorem)

e Definition 2. Suppose that (2, F,v) is a measure space and f > 0 is
a Borel function defined on 2. The integral of f with respect to v,
denoted by [ fdv, is defined as

[ fav =1 1.

where {f,}5°; is an increasing sequence of nonnegative simple func-
tions such that lim, oo fr(w) = f(w) for every w € 2.

e To see that the integral computed using Definition 2 is the same as
that computed using Definition 1.4(b) in the text, we will prove a
special case of the monotone convergence theorem (Theorem 1.1 (iii))
Theorem 1 Suppose that {f,}52; is an increasing sequence of non-

negative simple functions such that lim,_,~ fn(w) = f(w) < oo for
every w € Q). Then

[ v =t [ pudv,
where the integrals are defined using Definition 1.4(b) in the text.

The proof of Theorem 1 is adapted from the proof of Theorem 1.1 and
the following results will be used.

Fact 1 Suppose that f and g are two Borel functions such that 0 <
I <g, then
Og/fdug/gdy.

Fact 1 follows directly from the definition of an integral in Definition

1.4(b).
Fact 2 Suppose that f and g are two nonnegative simple functions,

then
/(f—l—g)duz /fdv—l—/gdv.

Fact 2 follows directly from the definition of the integral of a nonneg-
ative simple function.



e Proof of Theorem 1. Suppose that {f,}>2, is an increasing sequence
of nonnegative simple functions such that lim, . fn(w) = f(w) for
every w € ). We will show that

Jlrgo/fndug/fdu (1)
and
Ji [ fude > [ g (2)

to complete the proof. Note that from Fact 1, {[ f,dv}$2, is an
increasing sequence in [0, 00) U {oo} such that

[ fudv < [ gav.
so (1) holds.

To prove (2), let ¢ be a simple function such that 0 < ¢ < f. We will
show that

[ oav < Jim_ [ faav. (3)

then (2) holds since ¢ is arbitrary. To prove (3), let Ay = {w € Q2 :
¢(w) > 0}. If Ay = 0, then the simple function ¢ = 0 and (3) holds.
Below we will continue to prove (3) assuming A, # (.

(i) Suppose that v(Ay) = oo, let a = min{p(w) : w € Ay}, then
a > 0. By Fact 1,

/gi)dy > /aIA¢dV =av(Ay) = oo,

and it follows from Ay, C Us2 {fn > a/2} that

[ faltgsapmydv = Sv (L > a/2)) > 5o (Unlfa > a/2}) = S0(4g) = o0,

so (3) holds.

(i) Suppose that v(Ag) < oo, then by Egoroff’s theorem (Egorov’s
theorem), for every € > 0, there exists B C Ay such that v(B) < ¢
and f, converges to f on A, N B uniformly, so for 6 > 0, there
exists IV such that

|fn(w) — f(w)] <6 for w e Ay N B¢ and n > N,



which implies that
fla,npe < (fn+ 5)IA¢ch for n > N.
Taking the integral of the functions at both sides of the above

inequality with respect to v and apply Facts 1 and 2, we have for
n>N,

[ flasnsedv < [+ O)acpedv
= /ntA¢ﬂBCdy+/5IA¢ﬂBCdV

/ fadv + 60(Ay N B,

IN

which gives

/¢IA¢QBCdl/ S /fIA¢ﬁBCdV § <nli>Holo/fndl/> +61/(A¢QBC)

Since § > 0 is arbitrary, we have

/¢IA¢chdV < nli_)Holo/fndl/. (4)
Moreover, since [ ¢dv = [ ¢la,dv + [ ¢la,.dv and [ ¢la,.dv =
0, we have
/(bdu = /¢IA¢dI/
= /¢IBdV+/¢IA¢chdV. (5)
Note that

/gbIBdV < max{w € B°: ¢(w)}v(B),

so (5) gives
/gbdu < max{w € B°: ¢(w)}e + /¢IA¢chdV
©
< max{w € B°: ¢(w)}e + nli_{glo/fndy.

Since € > 0 can be made arbitrarily small, (3) holds.



From the above discussion, (3) holds for Cases (i) and (ii), so we have
prove (3), which implies (2), so the proof of Theorem 1 is complete
since both (1) and (2) hold.

The result in Theorem 1 can be extended to the case where f(w) is
allowed to be oo for some w € (). To prove the extension version, the
following results are used:

Fact 3 Suppose that f and g are nonnegative Borel functions such
that v ({w : g(w) # f(w)}) =0, then

/fdz/:/gdu.

To prove Fact 3, it is easier to prove Fact 3 for the special case where
f and g are nonnegative simple functions, and then apply it to prove
Fact 3 for the general case.

Fact 4 Suppose that lim,, o fn(w) = oo for w € A and v(A) < oo.
Then fore > 0, there exists B C A such that v(B) < € and for M > 0,
there exists N such that for n > N,

fn(w) > M forwe AN B°.

The proof of Fact 4 is left as an exercise.

Proof of Theorem 1 for the case where f(w) is allowed to be oo for
some w € Q. Let A ={w € Q: f(w) = co}. Suppose that {f,}22,
is an increasing sequence of nonnegative simple functions such that
lim,, o0 frn(w) = f(w) for every w € Q.

(i) Suppose that v(A) = 0. Then {f,14c}52; is an increasing se-
quence of nonnegative simple functions such that lim,, o fp(w)lac(w) =
f(w)Ie(w) < oo for every w € Q. Apply Theorem 1, then

nlinéo/f"IAch:/fIACdy'

Apply Fact 3 and the above equation gives

Jgrgo/fndyz/fdy

since fp, = fnlac v-a.e. and f = flgc v-a.e.



(ii) Suppose that v(A) > 0. Then [ fdv > [oo - I4dv = cc.
« If v(A) = oo, then

/fndu > /1 Tponydv > v({f > 1}),

where limy, oo (fn, > 1) = v(USZ{fn > 1}) > v(A) = ©
since A C UX {fn > 1}. Thus lim, o [ fndr = oo =
[ fdv.

« If 0 < v(A) < oo, then by Fact 4, for ¢ € (0,v(A)), there
exists B C A such that v¥(B) < ¢ and for M > 0, there exists
N such that for n > N,

fa(w) > M for w e AN B,

so forn > N,

/fndVZ /ntAchdVZ /MIAchdVZMV(AﬂBC).

Therefore,

lim /fndy > Mu(AN B°) for M > 0.

n—oo

Since v(AN B¢) =v(A) —v(B) > v(A) —e >0 and M can
be made arbitrarily large, we have lim,, o [ fndv = oo =

[ fdv.

The proof of Theorem 1 for the extension case is complete.

e Approximation of a nonnegative function using simple functions. Sup-
pose that f is a nonnegative function defined on . For n € {1,2,...},
and w € €, define

nif f(w) > n;

fn(w)Z{ E it flw) e [i w),ke{0,1,...,n2n—1}.
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Then f, < fnt+1 on  for every n and lim,, o0 frn(w) = f(w) for w € Q.



