
Proof of a special case of MCT (monotone convergence theorem)

• Definition 2. Suppose that (Ω,F , ν) is a measure space and f ≥ 0 is
a Borel function defined on Ω. The integral of f with respect to ν,
denoted by

∫
fdν, is defined as∫

fdν = lim
n→∞

fn,

where {fn}∞n=1 is an increasing sequence of nonnegative simple func-
tions such that limn→∞ fn(w) = f(w) for every w ∈ Ω.

• To see that the integral computed using Definition 2 is the same as
that computed using Definition 1.4(b) in the text, we will prove a
special case of the monotone convergence theorem (Theorem 1.1 (iii))

Theorem 1 Suppose that {fn}∞n=1 is an increasing sequence of non-
negative simple functions such that limn→∞ fn(w) = f(w) < ∞ for
every w ∈ Ω. Then ∫

fdν = lim
n→∞

∫
fndν,

where the integrals are defined using Definition 1.4(b) in the text.

The proof of Theorem 1 is adapted from the proof of Theorem 1.1 and
the following results will be used.

Fact 1 Suppose that f and g are two Borel functions such that 0 ≤
f ≤ g, then

0 ≤
∫
fdν ≤

∫
gdν.

Fact 1 follows directly from the definition of an integral in Definition
1.4(b).

Fact 2 Suppose that f and g are two nonnegative simple functions,
then ∫

(f + g)dν =

∫
fdν +

∫
gdν.

Fact 2 follows directly from the definition of the integral of a nonneg-
ative simple function.
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• Proof of Theorem 1. Suppose that {fn}∞n=1 is an increasing sequence
of nonnegative simple functions such that limn→∞ fn(w) = f(w) for
every w ∈ Ω. We will show that

lim
n→∞

∫
fndν ≤

∫
fdν (1)

and

lim
n→∞

∫
fndν ≥

∫
fdν (2)

to complete the proof. Note that from Fact 1, {
∫
fndν}∞n=1 is an

increasing sequence in [0,∞) ∪ {∞} such that∫
fndν ≤

∫
fdν,

so (1) holds.

To prove (2), let φ be a simple function such that 0 ≤ φ ≤ f . We will
show that ∫

φdν ≤ lim
n→∞

∫
fndν, (3)

then (2) holds since φ is arbitrary. To prove (3), let Aφ = {w ∈ Ω :
φ(w) > 0}. If Aφ = ∅, then the simple function φ = 0 and (3) holds.
Below we will continue to prove (3) assuming Aφ 6= ∅.

(i) Suppose that ν(Aφ) = ∞, let a = min{φ(w) : w ∈ Aφ}, then
a > 0. By Fact 1,∫

φdν ≥
∫
aIAφdν = aν(Aφ) =∞,

and it follows from Aφ ⊂ ∪∞n=1{fn > a/2} that∫
fnI{fn>a/2}dν ≥

a

2
ν ({fn > a/2})→ a

2
ν (∪n{fn > a/2}) ≥ a

2
ν(Aφ) =∞,

so (3) holds.

(ii) Suppose that ν(Aφ) < ∞, then by Egoroff’s theorem (Egorov’s
theorem), for every ε > 0, there exists B ⊂ Aφ such that ν(B) < ε
and fn converges to f on Aφ ∩ Bc uniformly, so for δ > 0, there
exists N such that

|fn(w)− f(w)| < δ for w ∈ Aφ ∩Bc and n > N ,
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which implies that

fIAφ∩Bc ≤ (fn + δ)IAφ∩Bc for n > N.

Taking the integral of the functions at both sides of the above
inequality with respect to ν and apply Facts 1 and 2, we have for
n > N , ∫

fIAφ∩Bcdν ≤
∫

(fn + δ)IAφ∩Bcdν

=

∫
fnIAφ∩Bcdν +

∫
δIAφ∩Bcdν

≤
∫
fndν + δν(Aφ ∩Bc),

which gives∫
φIAφ∩Bcdν ≤

∫
fIAφ∩Bcdν ≤

(
lim
n→∞

∫
fndν

)
+ δν(Aφ ∩Bc).

Since δ > 0 is arbitrary, we have∫
φIAφ∩Bcdν ≤ lim

n→∞

∫
fndν. (4)

Moreover, since
∫
φdν =

∫
φIAφdν +

∫
φIAφcdν and

∫
φIAφcdν =

0, we have ∫
φdν =

∫
φIAφdν

=

∫
φIBdν +

∫
φIAφ∩Bcdν. (5)

Note that ∫
φIBdν ≤ max{w ∈ Bc : φ(w)}ν(B),

so (5) gives∫
φdν ≤ max{w ∈ Bc : φ(w)}ε+

∫
φIAφ∩Bcdν

(4)

≤ max{w ∈ Bc : φ(w)}ε+ lim
n→∞

∫
fndν.

Since ε > 0 can be made arbitrarily small, (3) holds.
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From the above discussion, (3) holds for Cases (i) and (ii), so we have
prove (3), which implies (2), so the proof of Theorem 1 is complete
since both (1) and (2) hold.

• The result in Theorem 1 can be extended to the case where f(w) is
allowed to be ∞ for some w ∈ Ω. To prove the extension version, the
following results are used:

Fact 3 Suppose that f and g are nonnegative Borel functions such
that ν ({w : g(w) 6= f(w)}) = 0, then∫

fdν =

∫
gdν.

To prove Fact 3, it is easier to prove Fact 3 for the special case where
f and g are nonnegative simple functions, and then apply it to prove
Fact 3 for the general case.

Fact 4 Suppose that limn→∞ fn(w) = ∞ for w ∈ A and ν(A) < ∞.
Then for ε > 0, there exists B ⊂ A such that ν(B) < ε and for M > 0,
there exists N such that for n > N ,

fn(w) > M for w ∈ A ∩Bc.

The proof of Fact 4 is left as an exercise.

• Proof of Theorem 1 for the case where f(w) is allowed to be ∞ for
some w ∈ Ω. Let A = {w ∈ Ω : f(w) = ∞}. Suppose that {fn}∞n=1

is an increasing sequence of nonnegative simple functions such that
limn→∞ fn(w) = f(w) for every w ∈ Ω.

(i) Suppose that ν(A) = 0. Then {fnIAc}∞n=1 is an increasing se-
quence of nonnegative simple functions such that limn→∞ fn(w)IAc(w) =
f(w)IAc(w) <∞ for every w ∈ Ω. Apply Theorem 1, then

lim
n→∞

∫
fnIAcdν =

∫
fIAcdν.

Apply Fact 3 and the above equation gives

lim
n→∞

∫
fndν =

∫
fdν

since fn = fnIAc ν-a.e. and f = fIAc ν-a.e.
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(ii) Suppose that ν(A) > 0. Then
∫
fdν ≥

∫
∞ · IAdν =∞.

∗ If ν(A) =∞, then∫
fndν ≥

∫
1 · I{fn>1}dν ≥ ν({fn > 1}),

where limn→∞ ν(fn > 1) = ν(∪∞n=1{fn > 1}) ≥ ν(A) = ∞
since A ⊂ ∪∞n=1{fn > 1}. Thus limn→∞

∫
fndν = ∞ =∫

fdν.

∗ If 0 < ν(A) < ∞, then by Fact 4, for ε ∈ (0, ν(A)), there
exists B ⊂ A such that ν(B) < ε and for M > 0, there exists
N such that for n > N ,

fn(w) > M for w ∈ A ∩Bc,

so for n > N ,∫
fndν ≥

∫
fnIA∩Bcdν ≥

∫
MIA∩Bcdν = Mν(A ∩Bc).

Therefore,

lim
n→∞

∫
fndν ≥Mν(A ∩Bc) for M > 0.

Since ν(A ∩ Bc) = ν(A) − ν(B) > ν(A) − ε > 0 and M can
be made arbitrarily large, we have limn→∞

∫
fndν = ∞ =∫

fdν.

The proof of Theorem 1 for the extension case is complete.

• Approximation of a nonnegative function using simple functions. Sup-
pose that f is a nonnegative function defined on Ω. For n ∈ {1, 2, . . .},
and w ∈ Ω, define

fn(w) =

{
n if f(w) ≥ n;
k
2n if f(w) ∈

[
k
2n ,

k+1
2n

)
, k ∈ {0, 1, . . . , n2n − 1}.

Then fn ≤ fn+1 on Ω for every n and limn→∞ fn(w) = f(w) for w ∈ Ω.
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