
1 Probability theory

1.1 Probability spaces and random elements

1.1.1 σ-fields and measures

• σ-fields

– σ-field (Definition 1.1 in Section 1.1.1)

– σ(C): the smallest σ-field containing C
– Borel σ-field

• Measure related definitions

– Measurable space

– Measure (Definition 1.2 in Section 1.1.1)

– Example. Counting measure

• Uniqueness

– Theorem 10.3 (Billingsley 1986) Suppose that µ1 and µ2 are
measures on σ(P), where P is a π-system, and suppose they are
σ-finite on P . If µ1 and µ2 agree on P , then they agree on σ(P).

– Definition. Suppose that C is a collection of some subsets of Ω.
C is π-system if it is closed under finite intersections.

– Definition. Suppose that C is a collection of some subsets of Ω.
A measure µ is σ-finite on C if there exists {Ak}: a sequence of
sets in C such that

Ω = ∪kAk and µ(Ak) < ∞ for all k.

– Example. Lebesgue measure

– Product measure

• Properties (Proposition 1.1 in Section 1.1.1)

– Monotonicity

– Subadditivity

– Continuity
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1.1.2 Measurable functions and distributions

• Definition of a measurable function (Definition 1.3 in Section 1.1.2).

• Examples of measurable functions

– Indicator functions

– Operations applied to Borel functions that give Borel functions
(Proposition 1.4 in Section 1.1.2): arithmetic, sup, inf, liminf,
limsup.

– Suppose that f1, . . ., fk are measurable from (Ω,F) to (R,B), let
f = (f1, . . . , fk), then f is measurable from (Ω,F) to (R,B(Rk)).

– Simple functions

– Continuous functions (Proposition 1.4 (v))

– Composition of measurable functions (Proposition 1.4 (iv))

• Approximation property. Suppose that f is measurable from (Ω,F) to
(R,B), where R = R ∪ {∞,−∞} and B = σ(B ∪ {{∞}, {−∞}}).

– Suppose that f ≥ 0. Then there exists {fn}: a sequence of
real-valued simple functions such that 0 ≤ fn ≤ fn+1 < ∞ and
limn→∞ fn = f .

– Let

f+(w) =

{
f(w) if f(w) > 0;
0 otherwise,

and

f−(w) =

{
−f(w) if f(w) < 0;
0 otherwise.

Then f = f+ − f− and f+ and f− are measurable from (Ω,F) to
(R,B).

• σ-field induced by a function. Suppose that f is a function from Ω to
Λ. Suppose that G is a σ-field on Λ. Then f−1(G) = {f−1(A) : A ∈ G}
is called the σ-field induced by f . When it is clear what G is, f−1(G)
is often denoted by σ(f).

– σ(f) is the smallest σ-field that makes f measurable.
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– Example 1. Ω = {1, 2, 3, 4}. Y (1) = 4, Y (2) = 5, Y (3) = Y (4) =
6. Take F to be the smallest σ-field on Ω such that Y is measurable
from (Ω,F) to (R,B). Then F = σ({{1}, {2}, {3, 4}}). F is
denoted by σ(Y ).

• Suppose that f is measurable from (Ω,F) to (Λ,G). Suppose that
G contains all singletons in Λ. Then the value of f is determined if,
for each event A ∈ F , whether A occurs or not is determined. (See
Example 1)

• Lemma. (Theorem A.42 in “Theory of Statistics” by Schervish (1995);
Modified version of Lemma 1.2 (Theorem 1.6 in 1st Ed) in Section
1.4.1) Suppose that Y is measurable from (Ω,F) to (ΛY ,GY ) and Z
is measurable from (Ω,F) to (ΛZ ,GZ). Suppose that GZ contains all
singletons in ΛZ . Let T be the range of Y and T ∩GY be the σ-field on
T defined by {T ∩A : A ∈ GY }. Then Z is measurable from (Ω, σ(Y ))
to (ΛZ ,GZ) if and only if Z = h◦Y for some h that is measurable from
(T, T ∩ GY ) to (ΛZ ,GZ). (See Example 1)

• Proof of Lemma (the “only if” direction).

Suppose that Z is measurable from (Ω, σ(Y )) to (ΛZ ,GZ). The exis-
tence of h can be established by noting that

(*) for w1, w2 ∈ Ω, Y (w1) = Y (w2) implies that Z(w1) = Z(w2).

To see that (*) holds, suppose that Y (w1) = Y (w2) = a. Since Z
is measurable (wrt σ(Y )), there exists A ∈ GY such that Y −1(A) =
Z−1({Z(w1)}). Since w1 ∈ Z−1({Z(w1)}), we have w1 ∈ Y −1(A) and
a ∈ A, which gives w2 ∈ Y −1(A) and w2 ∈ Z−1({Z(w1)}), so Z(w2) =
Z(w1).

(*) implies that there exists a function h so that Z(w) = h(Y (w)) for
w ∈ Ω, where the domain of h is T : the range of Y . To prove the
measurablity of h wrt T ∩ GY , for B ∈ GZ , let A be an event in GY

such that Y −1(A) = Z−1(B) (the existence of A is garanteed by the
measurablity of Z wrt σ(Y )), then h is measurable if h−1(B) = A∩ T ,
where T is the range of Y . Below is the proof for h−1(B) = A ∩ T .

– h−1(B) ⊂ A ∩ T . Suppose that a ∈ h−1(B), then h(a) ∈ B
and a = Y (w) for some w ∈ Ω, so Z(w) = h(Y (w)) ∈ B and
w ∈ Z−1(B) = Y −1(A), which gives a = Y (w) ∈ A.
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– A ∩ T ⊂ h−1(B). Suppose that a ∈ A ∩ T . Then a = Y (w) ∈ A
for some w ∈ Ω, so w ∈ Y −1(A) = Z−1(B) and h(a) = Z(w) ∈ B,
which gives a ∈ h−1(B).

• Random variables/vectors and induced measures.

– Definition. X is a random vector on a probability space (Ω,F , P )
means X is measurable from (Ω,F) to (Rk,Bk), where Bk denotes
the Borel σ-field on Rk. When k = 1, X is called a random
variable.

– Definition. Suppose that f is measurable from (Ω,F) to (Λ,G).
and ν is a measure on (Ω,F). Then the measure on (Λ,G) induced
by f , denoted by ν ◦ f−1, is defined by

ν ◦ f−1(A) = ν(f−1(A)) for A ∈ G.

– Suppose X is a random varible on a probability space (Ω,F , P ).
Then the induced measure P ◦X−1 is called the distribution of X,
which is often characterized by its cumulative distribution function
(c.d.f.).

1.2 Integration and differentiation

1.2.1 Integration

• Definition of integration. (Definition 1.4 in Section 1.2.1)

– Integrable functions.

– Integration over a set.

– Example 2. Ω = {1, 2, 3, 4, 5, 6}. X(ω) = ω. ν: counting measure
on (Ω, 2Ω). P (A) = ν(A)/ν(Ω). Find

∫
XdP .

• Basic properties of integration

– Linearity (Proposition 1.5 in Section 1.2.1)

– Monotonicity (Proposition 1.6(i) in Section 1.2.1)

– If f ≥ 0 ν-a.e. and
∫
fdν = 0, then f = 0 ν-a.e. (Proposition

1.6(ii) in Section 1.2.1).

4



– ν(A) = 0 implies that
∫
A fdν = 0.

• Limits of integrals (Theorem 1.1 and Example 1.8 in Section 1.2.1)

– Fatou’s lemma

– Dominated convergence theorem

– Monotone convergence theorem

– Interchange of differentiation and integration

• Change of variable (Theorem 1.2 in Section 1.2.1)

• Fubini’s theorem (Theorem 1.3 in Section 1.2.1)

• Suppose that f is Riemann integrable on a finite interval I with end-
points a and b, where a < b. Let λ be the Lebesgue measure on (R,B).
Then

∫
I fdλ =

∫ b
a f(x)dx.

• Suppose that Ω is a countable set and ν is a measure on (Ω, 2Ω). Then
for a nonnegative f that is measurable from (Ω, 2Ω) to (R,B),∫

fdν =
∑
ω∈Ω

f(ω)ν({ω}).

1.2.2 Radon-Nikodym derivative

• Absolute continuity (Equation (1.19) in Section 1.2.2)

• Radon-Nikodym Theorem (Theorem 1.4 in Section 1.2.2). Note. Mea-
sures are assumed to be σ-finite.

Example 3. Suppose that Ω = {1, 2, 3} and P and ν are measures on
(Ω, 2Ω) so that P ({k}) = k/6 and ν({k}) = 1 for k ∈ Ω. Show that P
is absolute continuous with respect to ν and find dP/dν.

Example 4. Suppose that F is the c.d.f. of a random variable X and
F is continuously differentiable. Let λ be the Lebesgue measure on
(R,B). Then F ′ = dP ◦X−1/dλ.

• Suppose that X is a random variable and ν is a measure on (R,B). If
P ◦X−1 is absolute continuous with respect to ν, then dP ◦X−1/dν is
called the p.d.f. of X with respect to ν.
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Example 5. A standard normal random variable has a Lebesgue p.d.f.
f of the form

f(x) =
1√
2π

e−x2/2, x ∈ R.

Example 6. Suppose that Z is a standard normal random variable
and X = ZI[1,∞)(Z). Let µ be the probability measure on (R,B) such
that µ(A) = IA(0) for A ∈ B and λ be the Lebesgue measure on (R,B).
Show that X has a p.d.f. with respect to µ+ λ.

• Integration using Radon-Nikodym derivative (Proposition 1.7(i) in Sec-
tion 1.2.2)

Example 7. Suppose that X is a standard normal random variable on
a probability space (Ω,F , P ). Find

∫
XdP .

1.3 Distributions and their characteristics

• Ways of characterizing a distribution: p.d.f., c.d.f, characteristic func-
tion and moment generating function.

• Find the p.d.f. of a transformed random variable: Proposition 1.8 in
Section 1.3.1.

Example 8. Suppose that X is a random variable with Lebesgue p.d.f.
fX and fX(x) = 0 for x ≤ 0. Let Y = X2 and

g(y) =
fX(

√
y)

2
√
y

I(0,∞)(y).

Then g is a Lebesgue p.d.f. of Y .

Proof. Let λ be the Lebesgue measures on (R,B(R)) and let λ+(A) =∫
A I(0,∞)(x)dλ(x) for A ∈ B(R). Let h(y) =

√
yI(0,∞)(y) for y ∈

(−∞,∞). Then for 0 < b < ∞,∫
(−∞,b]

g(y)dλ(y) =
∫
I(

√
0,
√
b](
√
y)
fX(

√
y)

2
√
y

dλ+(y)

=
∫
I(0,

√
b](x)

fX(x)

2x
dλ+ ◦ h−1(x). (1)
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Note that
dλ+ ◦ h−1

dλ
(x) = 2xI(0,∞)(x) (λ-a.e.) (2)

since for 0 < b < ∞,

λ+ ◦ h−1((−∞, b]) = λ+((0, b2]) = b2 =
∫
(−∞,b]

2xI(0,∞)(x)dλ(x),

and for b ≤ 0,

λ+ ◦ h−1((−∞, b]) = 0 =
∫
(−∞,b]

2xI(0,∞)(x)dλ(x).

From (1) and (2), we have∫
(0,b]

g(y)dλ(y) =
∫
I(0,

√
b](x)fX(x)I(0,∞)(x)dλ(x)

=
∫
I(−∞,

√
b](x)fX(x)dλ(x)

= P (X ∈ (−∞,
√
b]) = P (Y ∈ (−∞, b])

for 0 < b < ∞. Moreover,
∫
(−∞,b] g(y)dλ(y) = 0 = P (Y ∈ (−∞, b]) for

b ≤ 0, so ∫
A
g(y)dλ(y) = P (Y ∈ A)

for every A ∈ B(R) and g is the Lebesgue density of Y .

1.4 Conditional expectations

1.4.1 Conditional expectations

• Definitions of E(X|A), P (B|A) and E(X|Y ) (Definition 1.6 in Section
1.4.1).

– Existence and uniqueness.

Example 9. Suppose that Ω = {1, 2, 3, 4}. P is a measure on (Ω, 2Ω)
such that P ({k}) = 1/4 for k ∈ Ω. Suppose that X(k) = k for k ∈ Ω
and Y (1) = 4, Y (2) = 5, Y (3) = Y (4) = 6. Find E(X|σ(Y )).

• Some facts following from the definition.
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– Suppose that X is measurable from (Ω,A0) to (R,B), where A0

is a sub-σ-field of A. Then E(X|A) = X.

– If A = {∅,Ω}, then E(X|A) = E(X).

• Properties of conditional expecations (Proposition 1.10 or Proposition
1.12 in the first edition).

– Suppose that X and Y are random vectors on (Ω,F , P ) and X
and Y take values in Rm and Rn respectively. X and Y are in-
dependent if and only if P ((X, Y ) ∈ A × B) for all A ∈ B(Rm),
B ∈ B(Rn).

• E(X|A) is the “best guess” of X given the knowledge of occurrences
of events in A in the following sense∫

(X − E(X|A))2dP ≤
∫
(X − Y )2dP (3)

for all Y : measurable from (Ω,A) to (R,B).

1.4.2 Independence

• Definition of independence (Definition 1.7)

• Conditional expectations and independence.

Fact 1 Suppose that X is a random variable on (Ω,F , P ) with E|X| <
∞, and A1 and A2 are sub-σ-fields of F . If σ(σ(X) ∪A1) and A2 are
independent, then

E(X|σ(A1 ∪ A2)) = E(X|A1) a.s.

The proof of Fact 1 is based on the result that∫
A1∩A2

E(X|A1)dP =
∫
A1∩A2

XdP for A1 ∈ A1 and A2 ∈ A2,

which can be established from the following fact:

Fact 2 Suppose that X is a nonnegative random variable on (Ω,F , P )
and A2 is a sub-σ-field of F . If A2 is independent of σ(X), then for
A2 ∈ A2,

E(XIA2) = P (A2)E(X).
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The proof of Fact 2 is based on Proposition 1.10 (vii).

Special cases of Fact 1:

– Proposition 1.11 in Section 1.4.2 (Proposition 1.14 in the first
edition). Note: σ((Y1, Y2)) = σ(σ(Y1) ∪ σ(Y2)).

– Suppose that X is a random variable on (Ω,F , P ) with E|X| < ∞
and Y is a measurable function from (Ω,F) to a measurable space.
Suppose that σ(X) and σ(Y ) are independent. Then

E(X|Y ) = E(X) a.s.

1.4.3 Conditional distributions

• Definition of a random measure on (Rn,Bn). Suppose that (Ω,F , P )
is a probability space and µ is a function on Bn × Ω satisfying (i) and
(ii):

(i) For every ω ∈ Ω, µ(·, ω) is a measure on (Rn,Bn).

(ii) For every B ∈ Bn, let X(ω) = µ(B,ω). Then X is measurable
from (Ω,F) to (R,B).

Then µ is a random measure on (Rn,Bn) with respect to the proba-
bility space (Ω,F , P ). Here R = R ∪ {∞} ∪ {−∞} and B = σ(B ∪
{{∞}, {−∞}}). If for every ω ∈ Ω, µ(·, ω) is a probability measure on
(Rn,Bn), then µ is a random probability measure on (Rn,Bn).

• Existence of conditional distributions (Theorem 1.7 (i); Theorem 1.7
in the first edition). Suppose that X and Y are random vectors on
(Ω,F , P ) and take values in Rn and Rm respectively. Let PY = P ◦Y −1

be the distribution of Y . Then there exists a random probability mea-
sure µ on (Rn,Bn) with respect to the probability space (Rm,Bm, PY )
such that

P ((X, Y ) ∈ B × C) =
∫
C
µ(B, y)dPY (y) for all B ∈ Bn, C ∈ Bm. (4)

For y in the range of Y , µ(·, y) is called a version of the conditional
distribution of X given Y = y, denoted by PX|Y (·|y) or PX|Y=y.
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• Conditional expectation = expectation with respect to conditional dis-
tribution. Suppose that g is measurable from (Rn × Rm,Bn+m) to
(R,B). Suppose that g is nonnegative. Let h(y) =

∫
g(x, y)dPX|Y (x|y).

Then E(g(X, Y )|Y ) = h(Y ). Note that if E(|g(X, Y )|) < ∞, then h
can be defined PY -a.e and we still have E(g(X, Y )|Y ) = h(Y ).

• (4) can be used to construct the joint distribution of X and Y .

• Conditional p.d.f.s. Suppose that X and Y are random vectors on
(Ω,F , P ) and take values in Rn and Rm respectively. Let PY denote
the distribution of Y . Suppose that for every y in the range of Y , µy

is a measure on (Rn,Bn) and h is a function such that µ(·, y) can serve
as a version of the conditional distribution of PX|Y=y, where µ(B, y) =∫
B h(x, y)dµy(x). That is, for each y, h(x, y) ≥ 0,∫

Rn
h(x, y)dµy(x) = 1 for every y,

for each B ∈ Bn, let

h1(y) =
∫
B
h(x, y)dµy(x),

then h1 is measurable from (Rm, Bm) to (R,B), and

P ((X, Y ) ∈ B×C) =
∫
C

∫
B
h(x, y)dµy(x)dPY (y) for all B ∈ Bn, C ∈ Bm.

Then h(·, y) is a p.d.f. for the conditional distribution PX|Y (·|y) with
respect to the measure µy. Such an h(·, y) is called a conditional p.d.f.
of X given Y = y respect to the measure µy and is denoted by fX|Y (·|y)
or fX|Y=y.

• Finding conditional p.d.f.s using joint p.d.f.s

– Joint p.d.f is with respect to a product measure (Proposition 1.9
in Section 1.4.1 or Proposition 1.11 in the first edition). Suppose
that (X, Y ) has a p.d.f. fX,Y with respect to a product measure
µ × ν. Let fY (y) =

∫
fX,Y (x, y)dµ(x), then fY is the p.d.f of Y

with respect to ν and fX,Y (·, y)/fY (y) is the conditional p.d.f. of
X given Y = y with respect to µ.
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– Joint p.d.f. is with respect to the distribution of another pair of
random vectors.

Fact 3 Suppose that (X, Y )’s distribution has a p.d.f. fX,Y with
respect to (X0, Y0)’s distribution. Let

fY (y) =
∫
fX,Y (x, y)dPX0|Y0=y(x),

then fY is a p.d.f. of Y with respect to the distribution of Y0 and
fX,Y (·, y)/fY (y) is the conditional p.d.f. of X given Y = y with
respect to PX0|Y0=y.

Example 10. Suppose that X1, . . ., Xn are IID and Xi ∼ N(µ, 1),
and Y1, . . ., Yn are IID and Yi ∼ N(0, 1). Let X = (X1, . . ., Xn),
X̄ =

∑n
i=1Xi/n, Y = (Y1, . . . , Yn), and Ȳ =

∑n
i=1 Yi/n. Show that

the distribution of (Y, Ȳ ) has a PDF with respect to PY,Ȳ .

1.5 Asymptotic theory

1.5.1 Convergence modes and stochastic orders

• Convergence modes (Definition 1.8)

– Almost everywhere convergence.

– Convergence in probability.

– Lr convergence.

– Convergence in distribution.

• Relation among different convergence modes. (Theorem 1.8)

– Almost surely convergence or Lr convergence implies convergence
in probability, which implies convergence in distribution.

– Convergence in distribution to a constant implies convergence in
probability.

– Skorohod’s theorem. Xn converges to X in distribution implies
that there exist {Yn} and Y such that

1. Xn and Yn have the same distribution,

2. Y and X have the same distribution, and
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3. Yn converges to Y almost surely.

• Xn converges to X in probability if and only if every subsequence of
{Xn} has a subsequence that converges to X almost surely.

• Borel Cantelli lemmas. (Lemma 1.5) Let lim supnAn = ∩∞
n=1 ∪∞

k=n Ak.

– First Borel Cantelli lemma. If
∑

n P (An) < ∞, then P (lim supnAn) =
0. Special case: Theorem 1.8 (v)

– Second Borel Cantelli lemma. IfAn’s are independent and
∑

n P (An) =
∞, then P (lim supnAn) = 1.

• Remark. The event lim supnAn occurs meansAn occurs infinitely often,
so we also denote lim supnAn as An i.o. (infinitely often).

– Fact. Suppose that P (|Xn −X| > εi.o.) = 0 for every ε > 0, then
Xn → X a.s. as n → ∞.

• Stochastic orders

– Suppose that {an} and {bn} are sequences in R and bn ̸= 0. Then
an = o(bn) means an/bn → 0 and an = O(bn) means {an/bn} is a
bounded sequence.

– Xn = Op(Yn) (Definition 1.9 (iii)).

– Xn = op(Yn) (Definition 1.9 (iv)).

– Xn = Op(1) means that for every ε > 0, there exists C > 0 such
that supn P (|Xn| ≥ C) < ε, where |·| denotes the Euclidean norm.

– Xn = op(1) means that |Xn| converges to 0 in probability.

1.5.2 Weak convergence

• Checking for convergence in distribution. Theorem 1.9.

1.5.3 Convergence of transformations

• Continuous mapping theorem (Theorem 1.10)

• Slutsky’s theorem (Theorem 1.11)

• Generalized delta method (Theorem 1.12)
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Example 11. Suppose that
√
n(Xn − 2) converges to N(0, 1) in dis-

tribution. Then n(Xn − 2)2 converges to χ2(1) in distribution and√
n(X2

n − 4) converges to N(0, 16) in distribution.

1.5.4 The Law of large number

• Convergence of the average of independent random variables. (Theo-
rem 1.14)

1.5.5 The center limit theorem

• Lindeberg’s CLT (Theorem 1.15). Suppose that {kn} is a sequence of
positive integers and for each n, Xn,1, . . . , Xn,kn are independent ran-

dom variables. Let σn =
√
V ar(

∑kn
j=1 Xn,j) and suppose that 0 < σ2

n <

∞. Then under the Lindeberg’s condition, σ−1
n

∑kn
j=1(Xn,j − EXn,j)

converges to N(0, 1) in distribution.

• Lindeberg’s condition.

lim
n→∞

σ−2
n

kn∑
j=1

E(Xn,j − EXn,j)
2I{|Xn,j−EXn,j |>εσn} = 0 for every ε > 0.

• Remarks on Lindeberg’s CLT.

– Proof of Lindeberg’s CLT is based on approximating the char-
acteristic function of σ−1

n

∑kn
j=1(Xn,j − EXn,j) and the following

inequalities∣∣∣∣∣
m∏
k=1

bk −
m∏
k=1

ak

∣∣∣∣∣ ≤
m∑
k=1

|bk − ak| if |ak| ≤ 1 and |bk| ≤ 1 for all k,

∣∣∣∣∣eiθ −
(
1 + iθ − θ2

2

)∣∣∣∣∣ ≤ min(θ2, |θ|3) for θ ∈ (−∞,∞),

and
|E(Z)| ≤ E|Z|.

– Lindeberg’s condition is implied by the Liapounov’s condition:∑kn
j=1 E|Xn,j − EXn,j|2+δ = o(σ2+δ

n ) for some δ > 0.
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– Lindeberg’s condition implies Feller’s condition:

max1≤j≤kn V ar(Xn,j)

σ2
n

→ 0 as n → ∞.

– It seems that the condition kn → ∞ in the text is not used in the
proof, but the condition follows from the Feller’s condition.

– The usual CLT is implied by Lindeberg’s CLT.

Example 12. Suppose that ε1, . . ., εn, . . . are IID random variables
with mean 0 and variance σ2 and {wi}∞i=1 is a sequence of real numbers.

Let Sn =
∑n

i=1wiεi and σn = σ
√∑n

i=1w
2
i . If lim

n→∞

max1≤i≤n |wi|
σn

= 0,

then Sn/σn converges to N(0, 1) in distribution.

• Multivariate CLT (Corollary 1.2).
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