1 Probability theory

1.1 Probability spaces and random elements

1.1.1 o-fields and measures

e o-fields

— o-field (Definition 1.1 in Section 1.1.1)
— 0(C): the smallest o-field containing C
— Borel o-field

e Measure related definitions

— Measurable space
— Measure (Definition 1.2 in Section 1.1.1)

— Example. Counting measure
e Uniqueness

— Theorem 10.3 (Billingsley 1986) Suppose that p; and py are
measures on o(P), where P is a m-system, and suppose they are
o-finite on P. If puy and ps agree on P, then they agree on o(P).

— Definition. Suppose that C is a collection of some subsets of 2.
C is m-system if it is closed under finite intersections.

— Definition. Suppose that C is a collection of some subsets of 2.
A measure p is o-finite on C if there exists {Ax}: a sequence of
sets in C such that

O = UpAg and pu(Ag) < oo for all k.

— Example. Lebesgue measure

— Product measure
e Properties (Proposition 1.1 in Section 1.1.1)

— Monotonicity
— Subadditivity
— Continuity



1.1.2 Measurable functions and distributions

e Definition of a measurable function (Definition 1.3 in Section 1.1.2).
e Examples of measurable functions

— Indicator functions

— Operations applied to Borel functions that give Borel functions
(Proposition 1.4 in Section 1.1.2): arithmetic, sup, inf, liminf,
limsup.

— Suppose that fi, ..., fr are measurable from (€, F) to (R, B), let
f=(f1,--., fr), then f is measurable from (Q, F) to (R, B(R*)).

— Simple functions

— Continuous functions (Proposition 1.4 (v))

— Composition of measurable functions (Proposition 1.4 (iv))

e Approximation property. Suppose that f is measurable from (Q, F) to
(R, B), where R = RU {00, —oo} and B = (B U {{oo}, {—0}}).

— Suppose that f > 0. Then there exists {f,}: a sequence of
real-valued simple functions such that 0 < f, < f,.1 < oo and
— Let ‘
Fr(w) = { g(w) if f(w) > 0;

otherwise,

and

0 otherwise.

(w) :{ —flw) if f(w) <0;

Then f = f* — f~ and f* and f~ are measurable from (2, F) to
(R, B).

e o-field induced by a function. Suppose that f is a function from € to
A. Suppose that G is a o-field on A. Then f~1(G) = {f7'(A): A€ G}
is called the o-field induced by f. When it is clear what G is, f~1(G)
is often denoted by o(f).

— o(f) is the smallest o-field that makes f measurable.



— Example 1. Q={1,2,3,4}. Y(1)=4,Y(2)=5,Y(3)=Y(4) =
6. Take F to be the smallest o-field on €2 such that Y is measurable
from (Q,F) to (R,B). Then F = o({{1},{2},{3,4}}). F is
denoted by o(Y).

e Suppose that f is measurable from (£, F) to (A,G). Suppose that
G contains all singletons in A. Then the value of f is determined if,
for each event A € F, whether A occurs or not is determined. (See
Example 1)

e Lemma. (Theorem A.42 in “Theory of Statistics” by Schervish (1995);
Modified version of Lemma 1.2 (Theorem 1.6 in 1st Ed) in Section
1.4.1) Suppose that Y is measurable from (£, F) to (Ay,Gy) and Z
is measurable from (€2, F) to (Az,Gz). Suppose that Gz contains all
singletons in Az. Let T be the range of Y and T'N Gy be the o-field on
T defined by {TNA: A€ Gy}. Then Z is measurable from (Q,0(Y))
to (Az,Gz) if and only if Z = hoY for some h that is measurable from
(T, TNGy) to (Az,Gz). (See Example 1)

e Proof of Lemma (the “only if” direction).

Suppose that Z is measurable from (2,0(Y)) to (Az,Gz). The exis-
tence of h can be established by noting that

(*) for wy, wy € Q, Y(wy) = Y (wsy) implies that Z(w;) = Z(wy).

To see that (*) holds, suppose that Y (w;) = Y(w2) = a. Since Z
is measurable (wrt o(Y)), there exists A € Gy such that Y™1(A) =
Z7Y{Z(wy)}). Since wy € Z7*({Z(wy)}), we have w; € Y1(A) and
a € A, which gives wy € Y71 (A) and wy € Z71{Z(w1)}), so Z(wy) =
Z(U)l)

(*) implies that there exists a function h so that Z(w) = h(Y (w)) for
w € (), where the domain of h is T the range of Y. To prove the
measurablity of h wrt T'N Gy, for B € Gz, let A be an event in Gy
such that Y1(A) = Z71(B) (the existence of A is garanteed by the
measurablity of Z wrt o(Y)), then h is measurable if h™1(B) = ANT,
where T is the range of Y. Below is the proof for h™'(B) = ANT.

— h™Y(B) € ANT. Suppose that a € h™'(B), then h(a) € B
and a = Y (w) for some w € Q, so Z(w) = h(Y(w)) € B and
w € ZYB) =Y (A), which gives a = Y (w) € A.
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— ANT C h(B). Suppose that a € ANT. Then a = Y(w) € A
for some w € Q, sow € Y (A) = Z7YB) and h(a) = Z(w) € B,
which gives a € h™'(B).

e Random variables/vectors and induced measures.

— Definition. X is a random vector on a probability space (2, F, P)
means X is measurable from (Q, F) to (R, B¥), where B* denotes
the Borel o-field on R¥. When k& = 1, X is called a random
variable.

— Definition. Suppose that f is measurable from (£, F) to (A, G).
and v is a measure on (2, F). Then the measure on (A, G) induced
by f, denoted by v o f~!, is defined by

vo fTHA)=v(f1(A)) for Acg.

— Suppose X is a random varible on a probability space (€2, F, P).
Then the induced measure Po X! is called the distribution of X,
which is often characterized by its cumulative distribution function
(c.d.f.).

1.2 Integration and differentiation
1.2.1 Integration

e Definition of integration. (Definition 1.4 in Section 1.2.1)

— Integrable functions.

— Integration over a set.

— Example2. Q= {1,2,3,4,5,6}. X(w) =w. v: counting measure
on (9,2%). P(A) = v(A)/v(Q). Find [ XdP.

e Basic properties of integration

— Linearity (Proposition 1.5 in Section 1.2.1)
— Monotonicity (Proposition 1.6(i) in Section 1.2.1)

— If f > 0 wv-ae. and [ fdv = 0, then f = 0 v-a.e. (Proposition
1.6(ii) in Section 1.2.1).



— v(A) = 0 implies that [, fdv = 0.

e Limits of integrals (Theorem 1.1 and Example 1.8 in Section 1.2.1)
— Fatou’s lemma
— Dominated convergence theorem

— Monotone convergence theorem

— Interchange of differentiation and integration
e Change of variable (Theorem 1.2 in Section 1.2.1)
e Fubini’s theorem (Theorem 1.3 in Section 1.2.1)

e Suppose that f is Riemann integrable on a finite interval I with end-
points a and b, where a < b. Let A be the Lebesgue measure on (R, B).
Then [; fd\ = [° f(z)dz.

e Suppose that €2 is a countable set and v is a measure on (£2,2). Then
for a nonnegative f that is measurable from (£2,2%) to (R, B),

[ 1dv =% i),

wef

1.2.2 Radon-Nikodym derivative
e Absolute continuity (Equation (1.19) in Section 1.2.2)

e Radon-Nikodym Theorem (Theorem 1.4 in Section 1.2.2). Note. Mea-
sures are assumed to be o-finite.

Example 3. Suppose that Q@ = {1,2,3} and P and v are measures on
(92,2%) so that P({k}) = k/6 and v({k}) = 1 for k € Q. Show that P
is absolute continuous with respect to v and find dP/dv.

Example 4. Suppose that F'is the c.d.f. of a random variable X and
F' is continuously differentiable. Let A be the Lebesgue measure on
(R,B). Then F' = dPo X~ '/d\.

e Suppose that X is a random variable and v is a measure on (R, B). If
P o X! is absolute continuous with respect to v, then dPo X! /dv is

called the p.d.f. of X with respect to v.
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1.3

Example 5. A standard normal random variable has a Lebesgue p.d.f.
f of the form

1
f(x) = e v, r € R.

Example 6. Suppose that Z is a standard normal random variable
and X = Z1I1,«)(Z). Let u be the probability measure on (R, B) such
that ©(A) = 14(0) for A € B and X be the Lebesgue measure on (R, B).
Show that X has a p.d.f. with respect to u + A.

Integration using Radon-Nikodym derivative (Proposition 1.7(i) in Sec-
tion 1.2.2)

Example 7. Suppose that X is a standard normal random variable on

a probability space (2, F, P). Find [ XdP.

Distributions and their characteristics

Ways of characterizing a distribution: p.d.f., c.d.f, characteristic func-
tion and moment generating function.

Find the p.d.f. of a transformed random variable: Proposition 1.8 in
Section 1.3.1.

Example 8. Suppose that X is a random variable with Lebesgue p.d.f.
fx and fx(z) =0 for z <0. Let Y = X? and

9ly) = f);(\/\/g)

Then g is a Lebesgue p.d.f. of Y.

](0,00) (y)

Proof. Let A be the Lebesgue measures on (R, B(R)) and let AT(A) =

Jaloooy(x)dA(z) for A € B(R). Let h(y) = /yloo)(y) for y €
(—00,00). Then for 0 < b < oo,

/(OO,b} 9(y)dAy) = /I(m,\/g](\/@ fx(v/0) d\T(y)

2\
_ /I(O,\/a(x) Ix@) s oni@). )
6
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Note that
d\t oh™ 1

d\
since for 0 < b < oo,

() = 22 (0,00)(7) (A-a.e.) (2)

Ao hl (=00, b]) = A*((0,5]) = b2 = /( oy 20 (@)Iw),

and for b <0,

Ao h L ((—o0,b) = 0 = /

(=00,

2 g ()N 2).
From (1) and (2), we have
/(O’b]g(y)dA(y) = / vty (2) 5 (2) Ty ()0 ()
= / I o (@) fx (z)dA(2)
= P(X € (~00,V]) = P(Y € (—00,b))

for 0 < b < co. Moreover, [_ 4 9(y)dA(y) = 0= P(Y € (—o0c,b]) for
b<0,so

[ 9@ary) = P(Y € 4)

for every A € B(R) and g is the Lebesgue density of Y.

1.4 Conditional expectations
1.4.1 Conditional expectations

e Definitions of E(X|A), P(B|A) and E(X|Y') (Definition 1.6 in Section
1.4.1).

— Existence and uniqueness.

Example 9.  Suppose that Q = {1,2,3,4}. P is a measure on (,2%)
such that P({k}) = 1/4 for k € Q. Suppose that X (k) = k for k € Q
and Y (1) =4,Y(2) =5,Y(3)=Y(4) =6. Find E(X|o(Y)).

e Some facts following from the definition.
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— Suppose that X is measurable from (€, .4g) to (R, B), where A,
is a sub-o-field of A. Then E(X|A) = X.

— If A={0,Q}, then E(X]A) = E(X).

e Properties of conditional expecations (Proposition 1.10 or Proposition
1.12 in the first edition).

— Suppose that X and Y are random vectors on (€2, F, P) and X

and Y take values in R™ and R" respectively. X and Y are in-
dependent if and only if P((X,Y) € A x B) for all A € B(R™),
B € B(R").

e F(X|A) is the “best guess” of X given the knowledge of occurrences
of events in A in the following sense

/(X — B(X|A))%dP < /(X —Y)2dP (3)

for all Y: measurable from (9, A) to (R, B).

1.4.2 Independence
e Definition of independence (Definition 1.7)

e Conditional expectations and independence.

Fact 1 Suppose that X is a random variable on (2, F, P) with E|X| <
0o, and Ay and Ay are sub-o-fields of F. If o(o(X) U A;) and Ay are
independent, then

E(X’O(Al U ./42)) = E(X‘.Al) a.s.
The proof of Fact 1 is based on the result that

/ E(X|Ay)dP = / XdP for A, € Ay and Ay € Ay,
A1NAs

A1NAg

which can be established from the following fact:

Fact 2 Suppose that X is a nonnegative random variable on (2, F, P)
and Ay is a sub-o-field of F. If Ay is independent of o(X), then for
Ay € Ay,

E(X14,) = P(A2) E(X).



The proof of Fact 2 is based on Proposition 1.10 (vii).

Special cases of Fact 1:

— Proposition 1.11 in Section 1.4.2 (Proposition 1.14 in the first
edition). Note: o((Y1,Y2)) = o(c(Y1) U (Y2)).
— Suppose that X is a random variable on (2, F, P) with E|X| < co

and Y is a measurable function from (€2, F) to a measurable space.
Suppose that o(X) and o(Y") are independent. Then

E(X|Y)=E(X) as.

1.4.3 Conditional distributions

e Definition of a random measure on (R",B™). Suppose that (Q,F, P)
is a probability space and p is a function on B" x ) satisfying (i) and

(ii):
(i) For every w € Q, u(-,w) is a measure on (R", B").

(ii) For every B € B", let X(w) = p(B,w). Then X is measurable
from (Q, F) to (R, B).

Then p is a random measure on (R",B") with respect to the proba-
bility space (2, F,P). Here R = R U {oo} U {—c0} and B = o(B U
{{oo}, {—o0}}). If for every w € Q, u(-,w) is a probability measure on
(R™,B"), then u is a random probability measure on (R", B").

e Existence of conditional distributions (Theorem 1.7 (i); Theorem 1.7
in the first edition). Suppose that X and Y are random vectors on
(92, F, P) and take values in R™ and R™ respectively. Let Py = PoY !
be the distribution of Y. Then there exists a random probability mea-
sure p on (R™, B™) with respect to the probability space (R™, B™, Py)
such that

P(X,Y) € BxC) = /CM(B,y)dPy(y) for all B € B",C € B™. (4)

For y in the range of Y, pu(-,y) is called a version of the conditional
distribution of X given Y =y, denoted by Pxy (-|y) or Px|y—y-



e Conditional expectation = expectation with respect to conditional dis-
tribution. Suppose that g is measurable from (R" x R™ B"™™) to
(R, B). Suppose that g is nonnegative. Let h(y) = [ g(z,y)dPxy (x|y).
Then E(g(X,Y)|Y) = h(Y). Note that if E(|g(X,Y)]) < oo, then h
can be defined Py-a.e and we still have E(g(X,Y)[Y) = h(Y).

e (4) can be used to construct the joint distribution of X and Y.

e Conditional p.d.f.s. Suppose that X and Y are random vectors on
(Q, F, P) and take values in R" and R™ respectively. Let Py denote
the distribution of Y. Suppose that for every y in the range of Y, p,
is a measure on (R™, B") and h is a function such that pu(-,y) can serve
as a version of the conditional distribution of Px|y—,, where u(B,y) =
[ h(x,y)dp,(z). That is, for each y, h(x,y) > 0,

/ h(z,y)du,(z) =1 for every v,
Rn

for each B € B", let
() = [ i, y)du, (@)
then hy is measurable from (R™, B™) to (R, B), and
P((X,Y) € BxC) = /C/B h(z, y)dp, (2)dPy (y) for all B € B",C € B™

Then h(-,y) is a p.d.f. for the conditional distribution Pxy(-|y) with
respect to the measure 1, Such an h(-,y) is called a conditional p.d.f.
of X given Y = y respect to the measure y,, and is denoted by fx|y(-|y)

or fX|Y:y'
e Finding conditional p.d.f.s using joint p.d.f.s

— Joint p.d.f is with respect to a product measure (Proposition 1.9
in Section 1.4.1 or Proposition 1.11 in the first edition). Suppose
that (X,Y) has a p.d.f. fxy with respect to a product measure
pxv. Let fy(y) = [ fxy(z,y)du(x), then fy is the p.d.fof Y
with respect to v and fxy(-,y)/fy(y) is the conditional p.d.f. of
X given Y = y with respect to pu.
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Joint p.d.f. is with respect to the distribution of another pair of
random vectors.

Fact 3 Suppose that (X,Y)’s distribution has a p.d.f. fxy with
respect to (Xo,Yo)’s distribution. Let

fy(y) = /fX,Y(%y)dPXO%:y(I),

then fy is a p.d.f. of Y with respect to the distribution of Yo and
Ixy (- 9)/fy(y) is the conditional p.d.f. of X given Y = y with
respect t0 Px|yo=y-

Example 10. Suppose that X7, ..., X,, are IID and X; ~ N(u, 1),
and Yy, ..., Y, are [ID and Y; ~ N(0,1). Let X = (X3, ..., X,,),
X=Y",X;/n,Y =(Y1,...,Y,),and Y = 3%, V;/n. Show that
the distribution of (Y,Y) has a PDF with respect to Pyy.

1.5 Asymptotic theory

1.5.1 Convergence modes and stochastic orders

e Convergence modes (Definition 1.8)

Almost everywhere convergence.
Convergence in probability.
L, convergence.

Convergence in distribution.

e Relation among different convergence modes. (Theorem 1.8)

Almost surely convergence or L, convergence implies convergence
in probability, which implies convergence in distribution.

Convergence in distribution to a constant implies convergence in
probability.

— Skorohod’s theorem. X, converges to X in distribution implies

that there exist {Y,,} and Y such that

1. X,, and Y,, have the same distribution,
2. Y and X have the same distribution, and

11



3. Y, converges to Y almost surely.

e X, converges to X in probability if and only if every subsequence of
{X,} has a subsequence that converges to X almost surely.

e Borel Cantelli lemmas. (Lemma 1.5) Let limsup,, A, = N>, U2, Ay.

— First Borel Cantelli lemma. If ", P(A,) < oo, then P(limsup,, A,) =
0. Special case: Theorem 1.8 (v)

— Second Borel Cantelli lemma. If A,’s are independent and },, P(A,,) =
00, then P(limsup,, 4,) = 1.

e Remark. The event lim sup,, A,, occurs means A,, occurs infinitely often,
so we also denote limsup,, A,, as A, i.0. (infinitely often).

— Fact. Suppose that P(| X, — X| > €i.0.) = 0 for every € > 0, then
X, = X a.s. as n — oo.

e Stochastic orders

— Suppose that {a,} and {b,} are sequences in R and b,, # 0. Then
a, = o(b,) means a,/b, — 0 and a, = O(b,) means {a,/b,} is a
bounded sequence.

— X, = O,(Y,,) (Definition 1.9 (iii)).
— X, = 0,(Y,,) (Definition 1.9 (iv)).

— X, = Opy(1) means that for every ¢ > 0, there exists C' > 0 such
that sup,, P(|X,| > C) < ¢, where |-| denotes the Euclidean norm.

— X, = 0,(1) means that | X,,| converges to 0 in probability.

1.5.2 Weak convergence

e Checking for convergence in distribution. Theorem 1.9.

1.5.3 Convergence of transformations

e Continuous mapping theorem (Theorem 1.10)
e Slutsky’s theorem (Theorem 1.11)

e Generalized delta method (Theorem 1.12)
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Example 11.  Suppose that /n(X, — 2) converges to N(0, 1) in dis-
tribution. Then n(X,, — 2)? converges to x?(1) in distribution and
V(X2 — 4) converges to N(0,16) in distribution.

1.5.4 The Law of large number

e Convergence of the average of independent random variables. (Theo-
rem 1.14)

1.5.5 The center limit theorem

e Lindeberg’s CLT (Theorem 1.15). Suppose that {k,} is a sequence of
positive integers and for each n, X, 1,..., X, 1, are independent ran-

dom variables. Let o, = \/Vafr(Zf;l X,..;) and suppose that 0 < 02 <

co. Then under the Lindeberg’s condition, o, * Zf;l(Xw - EX, ;)
converges to N (0, 1) in distribution.

e Lindeberg’s condition.

kn
lim o, Z E(X,, — EXW)2I{|Xn’j_EXn’j‘>wn} = 0 for every ¢ > 0.

n—00 .
Jj=1

e Remarks on Lindeberg’s CLT.

— Proof of Lindeberg’s CLT is based on approximating the char-
acteristic function of o, ! Z?il(Xn,j — EX,, ;) and the following

inequalities
ku—Hak §Z|bk—ak\ if |ak| gland ]bk|§1for all k,
k=1 k=1 k=1

< min(#?, ]0)®) for € (—o0, o),

) 62
0 N
e (1—{—26’ 2)

|E(Z)| < E|Z].

and

— Lindeberg’s condition is implied by the Liapounov’s condition:
Yhny B Xy — EX,j**0 = o(02+) for some & > 0.
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— Lindeberg’s condition implies Feller’s condition:

maxi<j<g, vVar(Xy;
== ( n’])—>0asn—>oo.

2
On

— It seems that the condition k,, — oo in the text is not used in the
proof, but the condition follows from the Feller’s condition.

— The usual CLT is implied by Lindeberg’s CLT.

Example 12.  Suppose that ¢, ..., g,, ... are IID random variables
with mean 0 and variance o2 and {w;}3°, is a sequence of real numbers.

n n . INaXy<i<n (W
Let S, = >0, wie; and 0, = />0, w?. If RILI&WH =0,
then S, /o, converges to N(0,1) in distribution.

On

e Multivariate CLT (Corollary 1.2).
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