Integration for bivariate functions

e Suppose that T C R? and f(x,y) > 0 for (x,y) € T. Let S be the region
under the surface z = f(z,y) when (x,y) € T. Then the volume (#874%)
of S is represented by

/T f(z, y)d(, ).

e Volume approximation.

— Divide T into N sub-regions Rj, ..., Ry, and approximate f by
f(xf,yf) on Ry, where (z},y;) € Ry is called a sub-region rep-
resentative (F B 3% # R & B). Then the volume under the surface
z = f(z,y) can be approximated by the Riemann sum (% % =)

N
S Fa ui) AR,
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where A(Ry) is the area of Ry.

— Ry, ..., Ry forms a partition (%~%l) of T, let P denote the partition.
The norm of P, denoted by ||P||, is the maximum of A(Ry), ...,
A(Rpy).

e Definition of [ . f(x,y)d(z,y).

N
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if the limit exists. In such case, we say f is Riemann integrable on T

e Suppose that T = [a,b] X [¢,d] = {(z,y) : © € [a,b] and y € [e,d]}, and
f is continuous on T except on a set of area zero. Then f is Riemann
integrable on T" and

(/;f(x,yﬁﬂx,y)ijdefo,y)dydz][djibf(x,y)dxdy

e Example 1. Find the volume of the region {(x,y,z) : (z,y) € [0,1] X
[0,2] and 0 < z < 23y}.

Sol. The volume is
/ 2yd(z,y)
[0,1]x[0,2]
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o Example 2. Find [j; 1,134 (22 + xy)d(z,y).

Sol.
14
//(x2+xy)dydx
0o J3
1

2
/ (x2+7m) dx:—5.
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e Compuation of fD f(z,y)d(z,y) for a general region D.

2
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/ (@ + ay)d(z,y)
[0,1] % [3,4]

— Define (.9) (.9)
| flz,y if (z,y) € D;
g, y) = { 0 otherwise,

and find a rectangle T" such that T' D D, then
[ 1@ty = [ gy,
D T

e Example 3. Let D = {(z,y) : 2* +y*> < 1,2 > 0,y > 0}, find [ (2* +
zy)d(z,y).
Sol. Define

22 +zy if (z,y) € D;
9(@,y) = { 0 otherwise.



Since D C [0,1] x [0,1], we have

/ (2% + zy)d(z,y) = / g(z,y)d(z,y)
D [0,1]%[0,1]

1 1
= //g(x,y)dydx
0 0
1 pV/I—z2
= // (2% + zy)dydx
0 0
1

= /0<x2 1—x2+—x(1gx2))d:c
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To find the exact integration region, it helps to use a graph.

r=20 r=1

(x,0)

e Note that for a region D = {(z,y) : a < z < band g(z) <y < h(z)},
where g and h are continuous functions on [a, b], we have

b ph(z)
/Df(m,y)d(fc,y)=/a /g(z) [ (z,y)dydz



if f is integrable on D. Similarly, for a region £ = {(z,y) : ¢ < y <
d and fi(y) < x < fa(y)}, where f1 and fy are continuous on [¢,d], we

have p d rfa(y) o
/Eﬂx,y) <x,y>—/c / f(y)dzdy

1(y)
if f is integrable on F.

e Some properties of integration (it is assumed that the functions f and g
are integrable)

— Linearity: for constants a and b,
/D(af(:my)erg(:v,y))d(w,y) =a/D f(%y)dwderb/Dg(w,y)d(w,y)-
— Dominance rule:
| fenday) < [ s its <o

— Subdivision rule: suppose a region D can be divided into D; and Dy
such that D1 U Dy = D and the area of Dy N Dy is zero, then

/ fdey) = [ fepdey) + [ faydey).
D D

D>

— [pld(z,y) = area of D.
— [p f(z,y)d(x,y) = 0 if the area of D is 0.

e Let D={(z,y):2—2y+2>0,z+y <1andy >0}
Example 4. Let D = {(z,y) : 2 —2y+2 > 0,z +y < 1and y > 0},

Dy =Dn{(z,y) : 2 <0} and Dy = DN {(x,y) : © > 0}. Suppose that F'
is a real-valued continuous function on RZ.

(a) Find two real-valued functions f and g such that

[ Py = [ 02 / " e )y

/ Pl = / 1 / " Pl y)dyda

(b) Find [}, 1d(z,y) using the result in Part (a).

and

Sol.



(a) Draw the graphs of Dy and Ds, and we can find that D; is the region
inside the triangle with vertices (—2,0), (0,1) and (0,0) and Ds is
the region inside the triangle with vertices (0,0), (0,1) and (1,0).
Since

Di={(z,y): —2<2<0and 0 <y < (z+2)/2},

and
Dy ={(z,y):0<z<land 0<y<1-—=z}.

we can take f(z) = (x 4+ 2)/2 and g(z) =1 — z.
(b) From Part (a), we have

0 r(z+2)/2 0 9
/ ld(z,y) = / / dydx = / id:v =1
Dy —2Jo 2 2
1 pl-z 1
/ ld(z,y) = / / ldydx = / (1 —-z)dz=1/2.
Do o Jo 0

It is clear that D = D1 U D5 and the area of Dy N Dy is zero. By the
subdivision rule, we have [}, 1d(z,y) = [, ld(z,y) + [ ld(z,y) =
1+1/2=15

and

e Change of variables (¥4 #).

Fact 1 Suppose that T is a subset of R* and H is a one-to-one function
defined on T and takes values in R?. Let S be the range of H and let

(‘T(uv 1}), y(“v U)) = Hﬁl(“? U)

for (u,v) € S. Suppose that x and y are differentiable functions with
continuous partial derivatives. Then

[ @) = [ fao.po)leodwy.
T s
where the function J is given by

Ty Ty

J = determinant of (
Yu Yo

) = TyYv — Yulo-

The function J is called the Jacobian, and we also denote it by




e Example 5. Let D = {(z,y) : 0 < 2® + y?> < 4,2 >0,y > 0}. Find

L/me_wQ_yzd(x»y)
D
by making the following change of variables: r = /22 + y2 and 0 is

determined by
cos(f) = x/\/x2 + 12
sin(0) = y/v/a? + y? (2)

0<60 <27

Sol. Given r = \/22 + y? and 6 determined by (2), we have x = r cos(f)
and y = rsin(d), so the transform H that maps (z,y) to (r,0) is one-to-
one. Let

S = {H(z,y): (z,y) € D}
{(V22+y2,0): (z,y) € D and 6 is determined by (2)},
then S = (0,2) x [0,7/2], so

[ awn = [ 060

_ / eI (r,0)|d(r, ),
(0,2)x[0,7/2]

where the Jacobian J(r, ) is

o(z,y Ox 0y 0Oy odx . .
3((r 9)) = 5,90 " 2,90~ cos(0)r cos() — r(—sin(6)) sin() = r.

Therefore,

7r/2 2 1— —4
/ e_x2_y2d<x’y) = / / e_rz\r|drd9 = 771-( € )
D 0 0 4

e In (1), the Jacobian J(u,v) is needed to adjust for the area change in the
Riemann sum approximation due to the change of variables. Consider the
special case where T is a rectangle region. Let (u(z,y),v(z,y)) = H(z,y)
for (x,y) € T, then S = {(u(z,y),v(z,y)) : (z,y) € T}.

— Suppose that { Ry} forms a partition of 7' and each Ry, is a rectangle
region with with left lower vertex (xy,yx). Then

| i) = 3 Hanm) AR,
k

— Let (ug,vr) = (uw(xg,yr),v(zk,yx)) and Sy = {(u(z,y),v(z,y)) :
(x,y) € Ry}, then (ug,v) € Sk and {Sk}x forms a partition of

S = {(u(z,y),v(x,y)) : (x,y) € T}.



— It can be shown that

~ IJ(Uk,’Uk)I, (3)
SO

> F@ryr) A(Re) = Y f@(uk, vi), y(uk, o)) (uk, vx) | A(Sk),
o

k

which explains (1) by taking the limits of the Riemann sums.

(zr, ur + Ay)

. Ry, (5, i) (zr + Az, yi)

e Justification of (3) : linear approximation and the fact that the area of
the parallelogram extended by @ = (aj,as2) and b = (by, b9) is given by

|a1b2 — (L2b1|.



e Informal verification of (3).

Let ABDC be the parallelogram in the u-v plane such that A = (u(zg, yx), v(zk, Y )),
B = (U(.’Ek + A$, yk)7 ’U(J:k + A:I:7 yk))) and C = (U(ffk;, Yk + Ay)? v(xkv Yk + Ay))
Then A(Sy) =~ Area of ABDC.

(w(@p, yp + Ay), v(xp, yp + Ay))

(. yr+Ay)

A r
(;lfk: ykj (;IT?C—II—A;I.} :Uk-) ('H-($k-_, 'yk), 'U(CC_I{-_, yk-))
(w(zk + Az, yi ), v(zk + Az, yk))
Note that
AB = (u(zk + Az ye), o(we + Az, ) — (u(wr ve), o(we ve)
~ (e (Th, Yk), Ve (2, Yr)) Az
and
AC = (ulenyr + Ay)oler ye + Ay)) — (ulzr, g, v, )
~ (uy(xk)yk)vvy(xkayk))Ay7
SO

Area of ABDC
~ AzAy- the area of the parallelogram extended by (uz (@, k), vz (2k, Yx)) and (uy(zk, yi), vy (Tk, Yr))
= |ua(@r, yr)vy (@, i) — vy (@r, Yr)v2 (2, i) | A(Rp).

Note that we have used the fact that the area of the parallelogram extended by
d@ = (a1,az2) and b = (b1, be) is given by

|a162 — a2b1 |



To see that (3) holds, note that H(z,y) = (u(z,y),v(z,y) for (x,y) € T and
H=Y(u,v) = (z(u,v),y(u,v)) for (u,v) € S ={H(z,y): (z,y) € T}, so

x(u(az,y),v(@y)) =z and y(u(x,y),v(x,y)) =Y

for (z,y) € T. Take partial derivatives with respect to z and y, then we have
Yoo Yo o=t m o \ @Y (@0) 01

J (g, Vi) (U (T ke, Y ) Oy (T Yk ) — Uy (Ts Ui ) Ve (T Yi)) = 1.
and (3) holds.

SO

e Example 6. Plot some points in the range of H(z,y) = (\/22 + 32, tan"!(y/x))
for (z,y) € [z1, 22] X [y1, y2] using the software R (can be downloaded from
the R official site). Run the following R commands and we have the plot
of some points in the range of H for given x1, y1, T2, ys.

plot.fun <- function(xl, y1, dx, dy){
x2 <- xl1+4dx
y2 <= yl+dy
m <- 13; n <- 15
#choose m equally spaced points in [x1,x2] and
# n equally spaced points in [y1,y2]
# to form m*n points in [x1,x2]x[y1,y2]
xy.mat <-as.matrix(expand.grid(seq(x1,x2,length=m), seq(yl,y2,length=n)))

#get the x coordinates and the y coordinates for the m*n points
#in [x1,x2]x[y1,y2]

x <- xy.mat[,1]

y <- xy.mat[,2]

#plot the m*n points in [x1,x2]x[yl,y2]
plot(x,y)

#plot the points (r,theta), where r=sqrt(x~2+y~2), theta = atan(y/x)
r <- sqrt(x"2+y~2)

theta <- atan(y/x)

plot(r,theta)

#plot the point (r,theta), where r=sqrt(x1°2+y1°2), theta = atan(yl/x1)
r <- sqrt(x1”2+y1~2)

theta <- atan(y1l/x1)

points(r, theta, col=2)



#Running plot.fun(xl, yl, dx, dy) gives the plot of some points in the range of H(x,y)
# for (x,y) in [x1, x1+dx] x [yl, yi+dy]

plot.fun(1, 3, 1, 2)

plot.fun(1l, 3, 0.01, 0.02)

Consider the H(z,y) in Example 6. Let (r(z,y),0(z,y)) = H(z,y). Let
A be the point (r(1,3),6(1,3)),

B=A+ (r;(1,3)-0.01,0,(1,3) - 0.01),
and
C=A+(ry,(1,3)-0.02,0,(1,3) - 0.02),

then the range of H(x,y) for (z,y) € [1,1.01] x [3,3.02] can be approxi-
mated using the parallelogram extended by AB and AC. Here

( rwgfmy) ry(z,9) ) ) = (( z:g::z)) izg::z)) ) (r,o)—H(1,3)>_ 7

01‘ xay) ey('ray)
where z(r,0) = rcos(f) and y(r,8) = rsin(f). Run the R commands in
Example 6 and then run the following R commands, then we can add the
segment AB and the segment AC' in the plot of some points in the range
of H for given 21 =1, y; = 3, 92 = 1.01, yo = 3.02.

x <-1; y <=3
r <- sqrt(x"2+y~2)
theta <- atan(y/x)

#compute M: the matrix of the partial derivatives of x, y with respective to r, theta
x.r <- cos(theta)

x.theta <- r*(-sin(theta))

y.r <- sin(theta)

y.theta <- r*cos(theta)

M <- matrix( c(x.r, y.r, x.theta, y.theta), 2, 2)

#compute the partial derivatives of r, theta with respect to x, y
#using the inverse matrix of M

M1 <- solve(M) #M1 is the inverse matrix of M

r.x <- Mi[1,1]

r.y <- Mi[1,2]

theta.x <- M1[2,1]

theta.y <- M1[2,2]

#plot the boundaries of the parallelogram
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lines( c(r,r+r.x*0.01), c(theta, theta + theta.x*0.01), col=2) #AB
lines( c(r,r+r.y*0.02), c(theta, theta + theta.y*0.02), col=3) #AC
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