Extrema for bivariate functions

- Absolute extrema
 - f(x, y) has an absolute maximum at (x_0, y_0) means $f(x, y) \le f(x_0, y_0)$ for every (x, y) in the domain of f.
 - -f(x,y) has an absolute minimum at (x_0, y_0) means $f(x,y) \ge f(x_0, y_0)$ for every (x, y) in the domain of f.
- Notation.

$$B((x_0, y_0), \delta) = \{(x, y) : ||(x, y) - (x_0, y_0)|| < \delta\}$$

- Relative extrema. Suppose that f is defined on a set containing $B((x_0, y_0), \delta)$ for some $\delta > 0$.
 - -f(x,y) has an relative maximum at (x_0, y_0) means $f(x,y) \le f(x_0, y_0)$ for every (x,y) in $B((x_0, y_0), \delta_0)$ for some $\delta_0 > 0$.
 - -f(x,y) has an relative minimum at (x_0, y_0) means $f(x,y) \ge f(x_0, y_0)$ for every (x,y) in $B((x_0, y_0), \delta_0)$ for some $\delta_0 > 0$.
- Partial derivative criteria for relative extrema. Suppose that f is defined on a set containing $B((x_0, y_0), \delta)$ for some $\delta > 0$. If f has a relative maximum or minimum at (x_0, y_0) and f_x and f_y both exist at (x_0, y_0) , then

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0.$$

- Proof of Theorem 11.11. Let $g(x) = f(x, y_0)$ and $h(y) = f(x_0, y)$. Suppose that f has a relative maximum (or minimum) at (x_0, y_0) , then g has a relative maximum (or minimum) at x_0 and h has a relative maximum (or minimum) at y_0 . Since $g'(x_0) = f_x(x_0, y_0)$ and $h'(y_0) = f_y(x_0, y_0)$, $f_x(x_0, y_0) = 0 = f_y(x_0, y_0)$ by the critical number theorem.
- If f is differentiable at (x_0, y_0) , then

$$f(x,y) \approx \underbrace{f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)}_{L(x,y)}.$$

The equation for the tangent plant (切平面方程式) to the curve z = f(x, y) at (x_0, y_0) is

$$z = L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

It is impossible to have $L(x, y) - L(x_0, y_0) \ge 0$ on $B((x_0, y_0), \delta)$ or $L(x, y) - L(x_0, y_0) \le 0$ on $B((x_0, y_0), \delta)$ unless $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$.

• Multivariate verison of Taylor's theorem. To obtain the Taylor expansion of f(x, y) at (x_0, y_0) , let $g(t) = f(x_0 + t(x - x_0), y_0 + t(y - y_0))$, then $g(0) = f(x_0, y_0)$ and g(1) = f(x, y). Then the univariate verison of Taylor's theorem says that

$$g(1) = \left(\sum_{k=1}^{n} \frac{g^{(k)}(0)t^k}{k!}\right) + \frac{g^{(n+1)}(c)t^{n+1}}{(n+1)!},\tag{1}$$

where c is between 1 and 0. (1) gives the multivariate version of Taylor's theorem.

Example 1. Suppose that f, f_x and f_y are differentiable on $B((x_0, y_0), \delta)$ for some $\delta > 0$ and $(x, y) \in B((x_0, y_0), \delta)$. Then

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + \frac{1}{2} \left(x - x_0 \quad y - y_0 \right) D^2 f(x_*, y_*) \left(\begin{array}{c} x - x_0 \\ y - y_0 \end{array} \right), \quad (2)$$

where

$$D^{2}f(x,y) = \left(\begin{array}{cc} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{array}\right)$$

and the point (x_*, y_*) lies on the segment with endpoints (x_0, y_0) and (x, y).

- Schwarz's theorem states that if f_{xy} and f_{yx} are continuous on $B((x_0, y_0), \delta)$ for some $\delta > 0$, then $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$ (so $D^2 f(x_0, y_0)$ is symmetric in such case).
- Suppose that A is a symmetric $n \times n$ real matrix. A is positive definite $(\pounds \hat{\mathfrak{L}})$ means that

 $v^T A v > 0$ for every non-zero $n \times 1$ vector v.

We use the notation A > 0 to indicate that A is positive definite. Note that A > 0 if and only if all its eigenvalues are positive.

• Suppose that A is a symmetric $n \times n$ real matrix. A is negativity definite (負定) means that

$$v^T A v < 0$$
 for every non-zero $n \times 1$ vector v .

We use the notation A < 0 to indicate that A is negative definite. Note that A < 0 if and only if all its eigenvalues are negative.

• Suppose that $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ and all the second-order partial derivatives of f are continuous on $B((x_0, y_0), \delta)$ for some $\delta > 0$. Then in (2), $D^2 f(x_*, y_*) \approx D^2 f(x_0, y_0)$, so

 $D^2 f(x_0, y_0) > 0 \Rightarrow f$ has a relative minimum at (x_0, y_0) ,

and

$$D^2 f(x_0, y_0) < 0 \Rightarrow f$$
 has a relative maximum at (x_0, y_0) .

• Fact 1 Suppose that A is a real symmetric 2×2 matrix. Then

 $A > 0 \Leftrightarrow det(A) > 0$ and trace(A) > 0

and

$$A < 0 \Leftrightarrow det(A) > 0$$
 and $trace(A) < 0$.

Here trace(A) is the sum of all diagonal elements of A.

- A modified second partial test. Suppose that $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ and all the second-order partial derivatives of f are continuous on $B((x_0, y_0), \delta)$ for some $\delta > 0$. Then we have the following results.
 - (a) If $\det(D^2 f(x_0, y_0)) > 0$, then
 - (i) a relative minimum occurs at (x_0, y_0) if trace $(D^2 f(x_0, y_0)) > 0$;
 - (ii) a relative maximum occurs at (x_0, y_0) if trace $(D^2 f(x_0, y_0)) < 0$.
 - (b) If det $(D^2 f(x_0, y_0)) < 0$, then there is no relative extremum at (x_0, y_0) . In such case, a saddle point (鞍點) occurs at (x_0, y_0) .
- Example 2. Suppose that $f(x, y) = x^2 y^2$. Find all the point(s) where the relative extrema or saddle point(s) of f occur.

Answer: no relative extrema; saddle point at (0,0).

Example 3. Suppose that $f(x,y) = x^2 + y^2 + 2x$. Find all the point(s) where the relative extrema or saddle point(s) of f occur.

Sol. Compute $f_x(x,y) = 2x + 2$ and $f_y(x,y) = 2y$. Solving 2x + 2 = 0 and 2y = 0 gives (x,y) = (-1,0). Compute the second partial derivatives and we have $f_{xx}(x,y) = 2$, $f_{xy}(x,y) = 0 = f_{yx}(x,y)$ and $f_{yy}(x,y) = 2$, so the matrix

$$D^2f(-1,0) = \left(\begin{array}{cc} 2 & 0\\ 0 & 2 \end{array}\right).$$

It is clear that $\det(D^2f(-1,0)) = 2 \cdot 2 > 0$ and $\operatorname{trace}(D^2f(-1,0)) = 2 + 2 > 0$, so $D^2f(-1,0) > 0$. From the modified second partial test, f has a relative minimum at (-1,0) and there is no saddle point.

- Extreme value theorem for a bivariate function. Suppose that f is a bivariate function that is continuous on S, where S is closed (封閉) and bounded (有界). Then f attains both its maximum and minimum on S.
- S is bounded means that $S \subset B((0,0), M)$ for some M > 0.
- S is closed means that S contains all of its boundary points (邊界點).

- A point (x_0, y_0) is a boundary point (邊界點) of S means that for every $\delta > 0$, $B((x_0, y_0), \delta)$ contains both some points S and some points not in S.

- Example. For two closed intervals [a, b] and [c, d], the rectangle $[a, b] \times [c, d] = \{(x, y) : x \in [a, b] \text{ and } y \in [c, d]\}$ is closed and bounded.
- From the extreme value theorem and the partial derivative criteria for relative extrema, the maximum or minimum of f on a closed and bounded set S exists and occurs either at a critical point (points where $f_x = 0 = f_y$ or one of f_x and f_y does not exist) or at a boundary point of S.

Example 4. Find the maximum and minimum of $f(x, y) = x^2 + y$ on $S = \{(x, y) : 0 \le x \le 1 \text{ and } 2 \le y \le 3\}.$

Sol. Since $f_x(x, y) = 2x$ and $f_y(x, y) = 1$, there is no critical point and the maximum and minimum of f occur at boundary points. The boundary points of S are in $S_1 \cup S_2 \cup S_3 \cup S_4$, where

$$S_1 = \{(x, 2) : 0 \le x \le 1\},$$

$$S_2 = \{(x, 3) : 0 \le x \le 1\},$$

$$S_3 = \{(0, y) : 2 \le y \le 3\},$$

and

$$S_4 = \{(1, y) : 2 \le y \le 3\}$$

On S_1 , $f(x, y) = x^2 + 2$ and $0 \le x \le 1$, the maximum and minimum of $x^2 + 2$ for $x \in [0, 1]$ are 3 and 2 respectively. On S_2 , $f(x, y) = x^2 + 3$ and $0 \le x \le 1$, the maximum and minimum of $x^2 + 2$ for $x \in [0, 1]$ are 4 and 3 respectively. On S_3 , f(x, y) = y and $2 \le y \le 3$, the maximum and minimum of y for $y \in [2, 3]$ are 3 and 2 respectively. On S_4 , f(x, y) = 1 + y and $2 \le y \le 3$, the maximum and minimum of 1 + y for $y \in [2, 3]$ are 4 and 3 respectively. In summary, the maximum of f on S is the maximum of $\{3, 4, 3, 4\}$, which is 4. The minimum of f on S is the minimum of $\{2, 3, 2, 3\}$, which is 2.