
Limit, continuity and differentiation of real-valued functions of
several variables.

• Notation. For x = (x1, . . . , xd) and a = (a1, . . . , ad), define

‖x− a‖ =
√

(x1 − a1)2 + · · ·+ (xd − ad)2.

– d = 2 case. ‖(x, y)− (x0, y0)‖ =
√

(x− x0)2 + (y − y0)2.

• Limit of a real-valued function of d variables. Suppose that a ∈ Rd.

lim
x→a

g(x) = L

means that for every ε > 0, there exists δ > 0 such that

0 < ‖x− a‖ < δ ⇒ |g(x)− L| < ε.

– d = 2 case. lim(x,y)→(x0,y0) g(x, y) = L means that for every ε > 0,
there exists δ > 0 such that

0 < ‖(x, y)− (x0, y0)‖ < δ ⇒ |g(x, y)− L| < ε

• Example 1. Show that lim(x,y)→(x0,y0) x = x0 for (x0, y0) ∈ R2.

Sol. Suppose that (x0, y0) ∈ R2. For ε > 0, take δ = ε, then

‖(x, y)− (x0, y0)‖ < δ

⇒ |x− x0| ≤ ‖(x, y)− (x0, y0)‖ < δ

⇒ |x− x0| < ε

so lim(x,y)→(x0,y0) x = x0 for (x0, y0) ∈ R2.

• It can be shown that lim(x,y)→(x0,y0) y = y0 for (x0, y0) ∈ R2. The proof
is left as an exercise.

• Suppose that L is a real number. Then

lim
x→a

g(x) = L⇔ lim
x→a

(g(x)− L) = 0⇔ lim
x→a
|g(x)− L| = 0.

• The sum/difference/product/quotient/squeeze rules remain valid.

• Example 2. Find lim(x,y)→(x0,y0)(x+ y) for (x0, y0) ∈ R2.

Sol. For a point (x0, y0) ∈ R2,

lim
(x,y)→(x0,y0)

(x+ y) = lim
(x,y)→(x0,y0)

x+ lim
(x,y)→(x0,y0)

y = x0 + y0.

Here we have used the fact that lim(x,y)→(x0,y0) y = y0 for (x0, y0) ∈ R2,
which is left as an exercise.
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• Example 3. Find lim(x,y)→(1,0)(x
2 + xy + y2 + 2x+ 1).

Sol. (12 + 1 · 0 + 02 + 2 · 1 + 1) = 4.

• Continuity.

– g is continuous at a means lim
x→a

g(x) = g(a).

– g is continuous on R2 means that for every (x0, y0) ∈ R2, g is con-
tinuous at (x0, y0).

• Example 4. Let f(x, y) = x for (x, y) ∈ R2. Then f is continuous on R2.

Note that from Example 1, lim(x,y)→(x0,y0) f(x, y) = f(x0, y0) for (x0, y0) ∈
R2, so f is continuous at every point in R2. That is, f is continuous on
R2.

• Polynomials of x and y are continuous functions of (x, y) on R2.

• Suppose that g is continuous at a and f is continuous at g(a), then f ◦ g
is continuous at a.

– Suppose that g : R2 → (−∞,∞) is continuous on R2 and f is con-
tinuous on (−∞,∞), then f ◦ g is continuous on R2.

• Example 5. Let f(x, y) = |x| for (x, y) ∈ R2, then f = g ◦ h, where
h(x, y) = x for (x, y) ∈ R2 and g(x) = |x| for x ∈ (−∞,∞). f is continu-
ous on R2 because h is continuous on R2 and g is continuous on (−∞,∞).

• Example 6. Let g(x, y) = sin(x + y) for (x, y) ∈ R2, then g = sin ◦f ,
where f(x, y) = x+ y. g is continuous on R2 since f is continuous on R2

and sin(·) is continuous on (−∞,∞).

• Example 7. Let f(x, y) = x2y/(x2 + y2) for (x, y) 6= (0, 0). Show that
lim(x,y)→(0,0) f(x, y) = 0 using the inequality |xy|/(x2 + y2) ≤ 1/2 for
(x, y) 6= (0, 0).

Sol. Since |xy|/(x2 + y2) ≤ 1/2 for (x, y) 6= (0, 0),

0 ≤ |f(x, y)| ≤ |x|
2

for (x, y) 6= (0, 0). From Example 5, lim(x,y)→(0,0) |x| = |0| = 0, so
lim(x,y)→(0,0) |x|/2 = 0 = lim(x,y)6=(0,0) 0. By squeeze rule,

lim
(x,y)→(0,0)

|f(x, y)| = 0,

so lim(x,y)→(0,0) f(x, y) = 0. Here we have used the fact that

lim
(x,y)→(0,0)

f(x, y) = 0⇔ lim
(x,y)→(0,0)

|f(x, y)| = 0,

which follows from the definition for a limit.
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• Composition limit rule. Suppose that f is continuous at a = (a1, . . . , ad),
g1, . . ., gd are d functions such that limt→t0 gi(t) = ai for i = 1, . . ., d.
Then

lim
t→t0

f(g1(t), . . . , gd(t)) = f

(
lim
t→t0

g1(t), . . . , lim
t→t0

gd(t)

)
= f(a).

• Example 8. Suppose that f(x, y) =
xy

x2 + y2
for (x, y) 6= (0, 0). Show

that f is not continuous at (0, 0).

Sol. Suppose that f is continuous at (0, 0). Then by the composition limit
rule, for a constant k,

lim
t→0

f(t, kt) = f
(

lim
t→0

t, lim
t→0

kt
)

= f(0, 0). (1)

However, from the definition of f ,

lim
t→0

f(t, kt) = lim
t→0

kt2

t2 + k2t2
=

k

1 + k2
, (2)

so (2) implies that limt→0 f(t, kt) depends on k, which contradicts with
(1). Therefore, f cannot be continuous at (0, 0).

• Differentiation. Suppose that f is defined at (x0, y0) and there exists
constants c, d and e such that

f(x, y) = c+ d(x− x0) + e(y − y0) + ε(x, y)‖(x, y)− (x0, y0)‖, (3)

where lim(x,y)→(x0,y0) ε(x, y) = 0 = ε(x0, y0). Then we say that f is
differentiable at (x0, y0).

• When f is differentiable at (x0, y0), the constants c, d and e in (3) can be
found as follows.

– In (3), plug in (x, y) = (x0, y0) and we have c = f(x0, y0).

– In (3), plug in y = y0, then

lim
x→x0

f(x, y0)− f(x0, y0)

x− x0
= lim

x→x0

d(x− x0) + ε(x, y0)|x− x0|
x− x0

= d.

– In (3), plug in x = x0, then

lim
y→y0

f(x0, y)− f(x0, y0)

y − y0
= lim

y→y0

e(y − y0) + ε(x0, y)|y − y0|
y − y0

= e.

• If f is differentiable at a, then f is continuous at a.

• Partial derivatives (two variable case).
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– The partial derivative (偏導數) of f(x, y) with respect to x at (x0, y0)
is

lim
x→x0

f(x, y0)− f(x0, y0)

x− x0
,

which is denoted by fx(x0, y0),
∂f(x, y)

∂x

∣∣∣∣
(x,y)=(x0,y0)

,
∂

∂x
f(x, y)

∣∣∣∣
(x,y)=(x0,y0)

,

or
∂f

∂x

∣∣∣∣
(x0,y0)

.

– The partial derivative of f(x, y) with respect to y at (x0, y0) is

lim
y→y0

f(x0, y)− f(x0, y0)

y − y0
,

which is denoted by fy(x0, y0),
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(x0,y0)

,
∂

∂y
f(x, y)

∣∣∣∣
(x,y)=(x0,y0)

or
∂f

∂y

∣∣∣∣
(x0,y0)

.

Example 9. f(x, y) = xy + y2. Find fx(1, 2) and fy(1, 2).

Sol 1.

fx(1, 2) = lim
x→1

f(x, 2)− f(1, 2)

x− 1
=

d

dx
(x · 2 + 22)

∣∣∣∣
x=1

= 2,

and

fy(1, 2) = lim
y→2

f(1, y)− f(1, 2)

y − 2
=

d

dy
(1 · y + y2)

∣∣∣∣
y=2

= 1 + 2y|y=2 = 5.

Sol 2.

fx(x0, y0) = lim
x→x0

f(x, y0)− f(x0, y0)

x− x0

=
d

dx
(xy0 + y20)

∣∣∣∣
x=x0

= y0|x=x0
= y0,

so fx(1, 2) = 2.

fy(x0, y0) =
d

dy
(x0y + y2)

∣∣∣∣
y=y0

= (x0 + 2y)|y=y0
= x0 + 2y0,

so fy(1, 2) = 1 + 2 · 2 = 5.

• Note that in Example 9, fx(x0, y0) and fy(x0, y0) exist for every (x0, y0) ∈
R2, so fx and fy can be considered as functions defined on R2.
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• Notation.
∂

∂x
f(x, y) means fx(x, y) and

∂

∂y
f(x, y) means fy(x, y).

Example 10. Find
∂

∂x
(xy + y2) and

∂

∂y
(xy + y2).

Sol.

∂

∂x
(xy+y2) = y(treating y as a constant, take derivative with respect to x)

and

∂

∂y
(xy+y2) = x+2y(treating x as a constant, take derivative with respect to y).

• Notation. B((x0, y0), r) = {(x, y) : ‖(x, y)− (x0, y0)‖ < r}.

• Fact 1 If f is defined on B((x0, y0), r) for some r > 0 and both fx and
fy are continuous on B((x0, y0), r), then f is differentiable at (x0, y0). In
particular, if fx and fy are continuous on R2, then f is differentiable on
R2.

• Suppose that f is differentiable at (x0, y0). Then the equation of tangent
plane to the surface z = f(x, y) at (x0, y0, f(x0, y0)) is

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

• Example 11. Suppose that f(x, y) = x2 + xy + x + 3y. Show that f is
differentiable on R2. Find the equation of the tangent plane to the surface
z = f(x, y) at the point (0, 1, f(0, 1)).

Sol.

fx(x, y) =
∂

∂x
(x2 + xy + x+ 3y) = 2x+ y + 1

and

fy(x, y) =
∂

∂y
(x2 + xy + x+ 3y) = x+ 3

Since both fx and fy are polynomials of x and y, we have lim(x,y)→(x0,y0) fx(x, y) =
fx(x0, y0) and lim(x,y)→(x0,y0) fy(x, y) = fy(x0, y0) for (x0, y0) ∈ R2, which
means that fx and fy are continuous on R2. By Fact 1, f is differentiable
on R2. The equation of the tangent plane to the surface z = f(x, y) at the
point (0, 1, f(0, 1)) is z = f(0, 1) + fx(0, 1)(x− 0) + fy(0, 1)(y− 1). Direct
calculation gives f(0, 1) = 3, fx(0, 1) = 2 and fy(0, 1) = 3, so the equation
of the tangent plane to the surface z = f(x, y) at the point (0, 1, f(0, 1))
is z = 3 + 2x+ 3(y − 1).
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• Example 12. Find the equation of tangent plane to the surface z =
x2 + 2x+ sin(xy) + 3y2 + 2 at (−1, 0, 1).

Sol. Since

∂

∂x
(x2 + 2x+ sin(xy) + 3y2 + 2)

∣∣∣∣
(x,y)=(−1,0)

= (2x+ 2 + cos(xy)y)|(x,y)=(−1,0) = 0

and

∂

∂y
(x2 + 2x+ sin(xy) + 3y2 + 2)

∣∣∣∣
(x,y)=(−1,0)

= (cos(xy)x+ 6y)|(x,y)=(−1,0) = −1,

the equation of tangent plane to the surface z = x2 + 2x + sin(xy) + 3y2

at (−1, 0, 1) is z = 1 + 0 · (x− (−1)) + (−1)(y − 0), which is z = 1− y.

• The existence of partial derivatives does not imply differentiability.

Example 13. Suppose that f(x, y) = 1 for x > 0 and y > 0 and
f(x, y) = 0 otherwise. Then fx(0, 0) = 0 = fy(0, 0). However, f is not
differentiable at (0, 0).

• Partial derivatives (three variable case).

– The partial derivative of f(x, y, z) with respect to x at (x0, y0, z0) is

lim
x→x0

f(x, y0, z0)− f(x0, y0, z0)

x− x0
,

which is denoted by fx(x0, y0, z0) or

∂

∂x
f(x, y, z)

∣∣∣∣
(x,y,z)=(x0,y0,z0)

or
∂f

∂x

∣∣∣∣
(x0,y0,z0)

.

– The partial derivative of f(x, y, z) with respect to y at (x0, y0, z0) is

lim
y→y0

f(x0, y, z0)− f(x0, y0, z0)

y − y0
,

which is denoted by fy(x0, y0, z0) or

∂

∂y
f(x, y, z)

∣∣∣∣
(x,y,z)=(x0,y0,z0)

or
∂f

∂y

∣∣∣∣
(x0,y0,z0)

.

– The partial derivative of f(x, y, z) with respect to z at (x0, y0, z0) is

lim
z→z0

f(x0, y0, z)− f(x0, y0, z0)

z − z0
,

which is denoted by fz(x0, y0, z0) or

∂

∂z
f(x, y, z)

∣∣∣∣
(x,y,z)=(x0,y0,z0)

or
∂f

∂z

∣∣∣∣
(x0,y0,z0)

.
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• General version of Fact 1. Suppose that all the (first order) partial deriva-
tive functions of f exist on B(a, δ) for some δ > 0 and are continuous at
a, where B(a, δ) = {x : ‖x− a‖ < δ}. Then f is differentiable at a.

• Higher order partial derivatives. For a function f(x, y), fx and fy are
called the first order partial derivatives of f . The four partial derivatives
of fx and fy are called the second order partial derivatives of f . Below
are their definitions and various expressions:

fxx(x, y) =
∂

∂x
fx(x, y) =

∂2

∂x2
f(x, y),

fxy(x, y) =
∂

∂y
fx(x, y) =

∂2

∂y∂x
f(x, y),

fyx(x, y) =
∂

∂x
fy(x, y) =

∂2

∂x∂y
f(x, y),

and

fyy(x, y) =
∂

∂y
fy(x, y) =

∂2

∂y2
f(x, y).

The third order partial derivatives of f are the eight partial derivatives of
the second order partial derivatives. Higher order partial derivatives can
be defined accordingly. For example,

fxxy(x, y) =
∂

∂y
fxx(x, y) =

∂3

∂y∂x2
f(x, y)

and

fxxyx(x, y) =
∂

∂x
fxxy(x, y) =

∂

∂x

(
∂3

∂y∂x2
f(x, y)

)
=

∂4

∂x∂y∂x2
f(x, y).

• For a function f(x, y, z), the higher order partial derivatives can be also
defined in a similar way. For instance,

fzxy(x, y, z) =
∂

∂y
fzx(x, y, z) =

∂2

∂y∂x
fz(x, y, z) =

∂3

∂y∂x∂z
f(x, y, z).

Example 14. f(x, y) = x2y + y2. Find fx, fy, fxx, fxy, fyx, fyy, and
fxyy.

Answers. fx(x, y) = 2xy, fy(x, y) = x2 + 2y, fxx(x, y) = 2y, fxy(x, y) =
2x = fyx(x, y), fyy(x, y) = 2 and fxyy(x, y) = 0.

Example 15. Suppose that f(x, y, z) = x + yz + sin(x2z). Find fx and
fxzy.

Answers: fx(x, y, z) = 1 + 2zx cos(x2z). fxzy(x, y, z) = 0.
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• Chain rule - one parameter version. Suppose that g(t) = f(x1(t), . . . , xd(t)),
where x1(t), . . ., xd(t) are differentiable function of t and f is differentiable
on the range of (x1(t), . . . , xd(t)), then

g′(t) =

d∑
j=1

∂f

∂xj
(x1(t), . . . , xd(t))x′j(t). (4)

(4) is sometimes expressed as

dg

dt
=

∂f

∂x1

dx1
dt

+ · · ·+ ∂f

∂xd

dxd
dt

.

– When d = 2 and g(t) = f(x(t), y(t)), where x and y are differentiable
at t and f is differnetiable at (x(t), y(t)), (4) becomes

g′(t) = fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t). (5)

– Proof of (5). Recall that f is differentiable at (x0, y0) means that

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+ε(x, y)‖(x− x0, y − y0)‖, (6)

where lim(x,y)→(x0,y0) ε(x, y) = 0 = ε(x0, y0). Apply (6) with (x, y) =
(x(t+ h), y(t+ h)) and (x0, y0) = (x(t), y(t)) to find g′(t).

Example 16. Suppose that f is a function on R2 such that fx(x, y) =
2x+ y and fy(x, y) = 2y + x. Let h(t) = f(t, t2) for t ∈ R. Find h′(t).

Sol.

h′(t) = fx(t, t2)
d

dt
t+ fy(t, t2)

d

dt
t2 = 2t+ t2 + 2t(2t2 + t) = 4t3 + 3t2 + 2t

• Chain rule - two parameter version.

– Suppose that z(u, v) = f(x, y), where x = x(u, v) and y = y(u, v).

Suppose that xu, xv, yu and yv exist and f is differentiable. Then

∂z

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
and

∂z

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
.

– Suppose that u = f(x, y, z), where x = x(s, t), y = y(s, t) and z =
z(s, t). Suppose that the partial derivatives of x, y and z with respect
to s and t exist and f is diffferentiable. Then

∂u

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
+
∂f

∂z

∂z

∂s

and
∂u

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t
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