Power series and Taylor series

e A power series (%% #) in 2 — ¢ is a series of the form

Z%(JC —c)".
k=0

The ay’s are called the coefficients of the power series (& #2 #6914 %) .

e Radius of convergence (M #F4&) . For a power series > oo, ax(z — c)F,
one of (i)-(iii) holds.
(i) The series converges absolutely for every real number z.
(ii) The series converges only for z = c.
(iii) There exists a number r € (0,00) such that the series converges
absolutely for |z — ¢| < r and diverges for |z — c| > r.

We say that the radius of convergence of the power series is

oo in Case (i);
0  in Case (ii);

r  in Case (iii).

e Example 1. Let r be the radius of convergence for a power series
Yreoar(z — 2)k. What can be said about r in each of the following
cases?

(a) The power series converges for z = 2.1.

(b) The power series diverges for z = 3.1.

(¢) The power series converges for x = 3 and diverges for x = 1.
Sol. Note that the power series converges absolutely for |z — 2| < r
and diverges for |z —2| > r, so r > |2.1 — 2| = 0.1 in Case (a) and

r < 3.1 —2| = 1.1 in Case (b). In Case (c), since r > |3 —2| = 1 and
r <|1—2|=1, we have r = 1.

e Ratio test (or root test) can be used for finding the radius convergence of
a power series.

Example 2. Find the radius of convergence of >y, 2% /kl.

Sol. We can show that the series > - |2*|/k! converges for all x using
the ratio test. Therefore, the radius of convergence for Y= |z*|/k! is cc.

Example 3. Find the radius of convergence of the power series Y ;- | =¥/ Vk.



Sol. From the ratio test, the series S_p- | |2*|/v/k converges when |z| < 1
and diverges when |z| > 1. Since the series Y32 | 2% /v/k does not diverge
for |x| < 1, its radius of convergence cannot be less than 1. Also, the
series > oo, 2% /v/k does not converge absolutely for |z| > 1, so its radius of
convergence cannot be greater than 1. Therefore, the radius of convergence
is equal to 1.

Term by term differentitation and integration. Suppose that a power series
Y reoak(z — ¢)F has radius of convergence 7 > 0. Then the following
results hold.

— The series Y o, agk(z — ¢)*~1 has radius of convergence r, and

d o0 o0
o Zak(az — o) = Zakkz(x —co)for |z — ¢ <7
k=0

k=1
_ AR+
— The series Z u has radius convergence r, and
k+1
k=0
d oo _ k+1 o0
dkaz_oom zkzoak(x—c)k for |z —c| <.

Example 4.  Let f(z) = Y po,2"/k! for © € (—00,00). Show that
f'(x) = f(z) for z € (—o0,00).

Sol. Term by term differentiation.

Example 5. Show that In(1 +z) = > 5o o (—1)kz*+1/(k + 1) for |z| < 1.

Sol. Since 1/(14 z) = >_p-,(—2)* and the power series > ;- ,(—z)* has
radius of convergence 1, from term by term integration, we have

d & s 1
—1)* =
dmz( ) k+1 142z

and
d > k gkt

for |x| < 1. From the zero derivative theorem, 1n( z) = C+>pe o (—1)Fah 1 /(k+
1) for |z| < 1. When = = 0, we have In(1 +0) = C +0, so C = 0 and
In(l+2z) =Y (-Dkx k“/(k-i— 1) for |z| < 1.

o0
Uniqueness theorem (Theorem 8.24). Suppose that Zak(x — ¢)¥ has
k=0

radius of convergence r > 0. Let f(x Zak z—c)¥ for |z —¢| < 7.

k=0
Then ay, = f*)(c)/k! for all k.



e The series S 7o f*)(c)(x — ) /k! is called the Taylor series (% %) 42 %)
of f at c. When ¢ = 0, it is called the Maclaurin series (%3t % & 4% #)
of f. The partial sum of the first n 4+ 1 terms of the Maclaurin series is
denoted by M, ().

e Note that if f(z) = > po,ax(z — ¢)* for |z — ¢| < r, where r > 0 is the
radius of convergence of ¥ p-, ax(z—c)¥, then by the uniqueness theorem,
the Taylor series of f at ¢ is > po  ar(z — ¢)F.

Example 6. Find the Maclaurin series of 1/(1 + x2).

Sol. Since 1/(1+22) = >>°_ (=1)™2?™ for |z| < 1, the Maclaurin series

m=0
of 1/(1+a?%)is > o0 (—=1)™a?™.

e It is possible that f(z) # Y rey f*)(c)(z — c)*/k! for |z — ¢| < r, where 7
is the radius of convergence of the Taylor series > po ) (c)(z — ¢)* /Kl
If f(x) =370, F*(c)(x — c)*/k!, then we say that f can be represented
by its Taylor series at c.

Example 7. Let f(z) = e=1/* for  # 0 and f(0) = 0. Show that f
cannot be represented by its Maclaurin series.

Sol. It can be shown that for & > 1,

—1/a? ; .
(k) _Je pr(1/x) if x #£0;
@) { 0 if o =0,

where pi(1/x) is a polynomial of 1/x. Therefore, the Maclaurin series of

fis 3502, f®(0)2F k! = 0 # f(z) for  # 0.
Example 8. Find the Maclaurin series for cos(z).

b
Ans. The Maclaurin series for cos(x) is E k—ﬁxk, where
k=0

dk‘

be = Tk

cos(x)

] 0 if k£ is odd;
w0 L (=DF2 if ks even.

(=1
(2m)!

m
x>,
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We can also express the Maclaurin series for cos(z) as g

m=0

Example 9. Find the Taylor series of In(z) at 1.

— (—1)F*! :
Ans. The Taylor series of In(z) at 1 is Z %(m L
k=1



e Taylor’s theorem (Theorem 8.25). Suppose that f*) exists for k < (n+1)
on an open interval I that contains a number ¢. Then for z € I,

— - f(k)(c) fn+1(2n) n
f(x)—kz::o A ($—C)k+m(9ﬁ—0) 1, (1)

where z,, is a number between ¢ and x.

Example 10. Find the Maclaurin polynomial series M5 (x) for e* and use
this polynomial to approximate e. Use the Taylor’s theorem to determine
the approximation accuracy.

Sol. Ms(z) = 22:0 x¥ /K. From Taylor’s theorem, e! — M;5(1) = €*15/6!,
where z is between 0 and 1. Therefore, |e — M5(1)| < e/6! < 3/6! = 1/240.
Here e < 3 follows from the fact that (1 + 1/n)" < > 7_1/k! < 1+

n —k+1
P 27kl <3,

Example 11. Show that cos(z) can be represented by its Maclaurin series.

Sol. Apply Taylor’s theorem with f(x) = cos(z) and show that the re-
fnJrl(Zn)

m(w —0)"*! converges to 0 as n — co.

mainder term

e From Taylor’s theorem, if f” exists on an open interval containing [a, b]
and
|f"(x)] < My for x € [a,b],

then for ¢ € (a,b),

My(z — ¢)?

[f(@) = f(e) = f(e)(x — )| < 2

for x € [a,b].

Example 12. Suppose that f(z) = sin(z).

(a) Find the maximum of |f”| on [—0.05,0.05].
(b) Find a, b and M such that |f(x) — a — bz| < Mz? for |z| < 0.05.

Answers: (a) sin(0.05). (b) a = f(0) =0, b= f(0) =1 and M = 0.025
(M can be any number such that M > 0.5sin(0.05) = 0.024989...).



Proof for Taylor’s theorem (Theorem 8.25).

We will first show that

mol k) (o z p(m)
fa =Y E ek comt [ LG )
k=0 . c :

for 1 <m < n. It is clear that (2) holds for m = 1. Suppose that (2) holds for
a particular m < n and suppose that m + 1 < n, then

_ N Y N (e
flo) = 3 -t | smmat—=

m—1 (k) c — )™ T
_ f '( )(x—c)k—l— (_1)m71 f(m)(t) (t ')

= k! m)! .
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k=0

T £(m+1)
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so (2) holds for m + 1. By induction, (2) holds for 1 < m < mn.
Note that (1) follows from (2) with m = n and the fact that

z p(n) () (¢ (n+1) (5 )
(_1)n—1/ (J;_(f;'(t—.f)n_ldt—f n'( )($—C)n — f(n+§-)')(w_c)n+ (3)

for some z, between x and ¢. Now we are ready to prove (3). Let J be the
closed interval with endpoints ¢ and z. Define

R e

and g(c) = f™*V(c), then g is continuous on J. Let M, and m, be the
maximum and minimum of g on J respectively. Let
= £(n) (n)
_ n—1 f (t) n—1 f (C) n
I = (-1 / Loyt = O @

n!

)n—l

ot [ (s - 1) S
- [ (w-sme) S



then

L - [0 tdei,

(@ — )t t—c (n—1)/(z — ¢)n+1

(1—wu)nt

/0 glc+ u(z — c))wdu

Since ¢+ u(z — ¢) € J for u € [0, 1], we have m, < g(c+ u(x — ¢)) < My and

1 o n—1 1 _ n—1
/ mgu(l w) du < I < / M, u(l —u) du,
0 (n—1)! (x — )t o (n—1)!

SO

1
@) = e

By the intermediate value theorem, there exists ¢; in J such that

mg <

1
9 = g T

From the definition of g, there exists z, between ¢ and ¢; such that g(c;) =
FO ) (2n), s0
I

(x —c)*t/(n+ 1)1
and (3) holds. The proof of (1) is complete.
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