
Power series and Taylor series

• A power series (冪級數) in x− c is a series of the form

∞∑
k=0

ak(x− c)k.

The ak’s are called the coefficients of the power series (冪級數的係數) .

• Radius of convergence (收斂半徑) . For a power series
∑∞

k=0 ak(x − c)k,
one of (i)-(iii) holds.

(i) The series converges absolutely for every real number x.

(ii) The series converges only for x = c.

(iii) There exists a number r ∈ (0,∞) such that the series converges
absolutely for |x− c| < r and diverges for |x− c| > r.

We say that the radius of convergence of the power series is ∞ in Case (i);
0 in Case (ii);
r in Case (iii).

• Example 1. Let r be the radius of convergence for a power series∑∞
k=0 ak(x − 2)k. What can be said about r in each of the following

cases?

(a) The power series converges for x = 2.1.

(b) The power series diverges for x = 3.1.

(c) The power series converges for x = 3 and diverges for x = 1.

Sol. Note that the power series converges absolutely for |x − 2| < r
and diverges for |x − 2| > r, so r ≥ |2.1 − 2| = 0.1 in Case (a) and
r ≤ |3.1 − 2| = 1.1 in Case (b). In Case (c), since r ≥ |3 − 2| = 1 and
r ≤ |1− 2| = 1, we have r = 1.

• Ratio test (or root test) can be used for finding the radius convergence of
a power series.

Example 2. Find the radius of convergence of
∑∞

k=0 x
k/k!.

Sol. We can show that the series
∑∞

k=0 |xk|/k! converges for all x using
the ratio test. Therefore, the radius of convergence for

∑∞
k=0 |xk|/k! is∞.

Example 3. Find the radius of convergence of the power series
∑∞

k=1 x
k/
√
k.
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Sol. From the ratio test, the series
∑∞

k=1 |xk|/
√
k converges when |x| < 1

and diverges when |x| > 1. Since the series
∑∞

k=1 x
k/
√
k does not diverge

for |x| < 1, its radius of convergence cannot be less than 1. Also, the
series

∑∞
k=1 x

k/
√
k does not converge absolutely for |x| > 1, so its radius of

convergence cannot be greater than 1. Therefore, the radius of convergence
is equal to 1.

• Term by term differentitation and integration. Suppose that a power series∑∞
k=0 ak(x − c)k has radius of convergence r > 0. Then the following

results hold.

– The series
∑∞

k=1 akk(x− c)k−1 has radius of convergence r, and

d

dx

∞∑
k=0

ak(x− c)k =

∞∑
k=1

akk(x− c)k−1 for |x− c| < r.

– The series

∞∑
k=0

ak(x− c)k+1

k + 1
has radius convergence r, and

d

dx

∞∑
k=0

ak(x− c)k+1

k + 1
=

∞∑
k=0

ak(x− c)k for |x− c| < r.

Example 4. Let f(x) =
∑∞

k=0 x
k/k! for x ∈ (−∞,∞). Show that

f ′(x) = f(x) for x ∈ (−∞,∞).

Sol. Term by term differentiation.

• Example 5. Show that ln(1 + x) =
∑∞

k=0(−1)kxk+1/(k + 1) for |x| < 1.

Sol. Since 1/(1 + x) =
∑∞

k=0(−x)k and the power series
∑∞

k=0(−x)k has
radius of convergence 1, from term by term integration, we have

d

dx

∞∑
k=0

(−1)k
xk+1

k + 1
=

1

1 + x

and
d

dx

( ∞∑
k=0

(−1)k
xk+1

k + 1
− ln(1 + x)

)
= 0

for |x| < 1. From the zero derivative theorem, ln(1+x) = C+
∑∞

k=0(−1)kxk+1/(k+
1) for |x| < 1. When x = 0, we have ln(1 + 0) = C + 0, so C = 0 and
ln(1 + x) =

∑∞
k=0(−1)kxk+1/(k + 1) for |x| < 1.

• Uniqueness theorem (Theorem 8.24). Suppose that

∞∑
k=0

ak(x − c)k has

radius of convergence r > 0. Let f(x) =

∞∑
k=0

ak(x − c)k for |x − c| < r.

Then ak = f (k)(c)/k! for all k.
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• The series
∑∞

k=0 f
(k)(c)(x − c)k/k! is called the Taylor series (泰勒級數)

of f at c. When c = 0, it is called the Maclaurin series (麥克勞倫級數)
of f . The partial sum of the first n + 1 terms of the Maclaurin series is
denoted by Mn(x).

• Note that if f(x) =
∑∞

k=0 ak(x − c)k for |x − c| < r, where r > 0 is the
radius of convergence of

∑∞
k=0 ak(x−c)k, then by the uniqueness theorem,

the Taylor series of f at c is
∑∞

k=0 ak(x− c)k.

Example 6. Find the Maclaurin series of 1/(1 + x2).

Sol. Since 1/(1 + x2) =
∑∞

m=0(−1)mx2m for |x| < 1, the Maclaurin series
of 1/(1 + x2) is

∑∞
m=0(−1)mx2m.

• It is possible that f(x) 6=
∑∞

k=0 f
(k)(c)(x− c)k/k! for |x− c| < r, where r

is the radius of convergence of the Taylor series
∑∞

k=0 f
(k)(c)(x− c)k/k!.

If f(x) =
∑∞

k=0 f
(k)(c)(x− c)k/k!, then we say that f can be represented

by its Taylor series at c.

Example 7. Let f(x) = e−1/x
2

for x 6= 0 and f(0) = 0. Show that f
cannot be represented by its Maclaurin series.

Sol. It can be shown that for k ≥ 1,

f (k)(x) =

{
e−1/x

2

pk(1/x) if x 6= 0;
0 if x = 0,

where pk(1/x) is a polynomial of 1/x. Therefore, the Maclaurin series of
f is

∑∞
k=0 f

(k)(0)xk/k! = 0 6= f(x) for x 6= 0.

Example 8. Find the Maclaurin series for cos(x).

Ans. The Maclaurin series for cos(x) is

∞∑
k=0

bk
k!
xk, where

bk =
dk

dxk
cos(x)

∣∣∣∣
x=0

=

{
0 if k is odd;
(−1)k/2 if k is even.

We can also express the Maclaurin series for cos(x) as

∞∑
m=0

(−1)m

(2m)!
x2m.

Example 9. Find the Taylor series of ln(x) at 1.

Ans. The Taylor series of ln(x) at 1 is

∞∑
k=1

(−1)k+1

k
(x− 1)k.
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• Taylor’s theorem (Theorem 8.25). Suppose that f (k) exists for k ≤ (n+1)
on an open interval I that contains a number c. Then for x ∈ I,

f(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k +

fn+1(zn)

(n + 1)!
(x− c)n+1, (1)

where zn is a number between c and x.

Example 10. Find the Maclaurin polynomial series M5(x) for ex and use
this polynomial to approximate e. Use the Taylor’s theorem to determine
the approximation accuracy.

Sol. M5(x) =
∑5

k=0 x
k/k!. From Taylor’s theorem, e1−M5(1) = ez16/6!,

where z is between 0 and 1. Therefore, |e−M5(1)| ≤ e/6! ≤ 3/6! = 1/240.
Here e ≤ 3 follows from the fact that (1 + 1/n)n ≤

∑n
k=0 1/k! ≤ 1 +∑n

k=1 2−k+1 ≤ 3.

Example 11. Show that cos(x) can be represented by its Maclaurin series.

Sol. Apply Taylor’s theorem with f(x) = cos(x) and show that the re-

mainder term
fn+1(zn)

(n + 1)!
(x− 0)n+1 converges to 0 as n→∞.

• From Taylor’s theorem, if f ′′ exists on an open interval containing [a, b]
and

|f ′′(x)| ≤M0 for x ∈ [a, b],

then for c ∈ (a, b),

|f(x)− f(c)− f ′(c)(x− c)| ≤ M0(x− c)2

2
for x ∈ [a, b].

Example 12. Suppose that f(x) = sin(x).

(a) Find the maximum of |f ′′| on [−0.05, 0.05].

(b) Find a, b and M such that |f(x)− a− bx| ≤Mx2 for |x| ≤ 0.05.

Answers: (a) sin(0.05). (b) a = f(0) = 0, b = f ′(0) = 1 and M = 0.025
(M can be any number such that M ≥ 0.5 sin(0.05) = 0.024989...).
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Proof for Taylor’s theorem (Theorem 8.25).

We will first show that

f(x) =

m−1∑
k=0

f (k)(c)

k!
(x− c)k + (−1)m−1

∫ x

c

f (m)(t)

(m− 1)!
(t− x)m−1dt (2)

for 1 ≤ m ≤ n. It is clear that (2) holds for m = 1. Suppose that (2) holds for
a particular m ≤ n and suppose that m + 1 ≤ n, then

f(x) =

m−1∑
k=0

f (k)(c)

k!
(x− c)k + (−1)m−1

∫ x

c

f (m)(t)d
(t− x)m

m!

=

m−1∑
k=0

f (k)(c)

k!
(x− c)k + (−1)m−1 f (m)(t)

(t− x)m

m!

∣∣∣∣x
c

−(−1)m−1
∫ x

c

(t− x)m

m!
f (m+1)(t)dt

=

m−1∑
k=0

f (k)(c)

k!
(x− c)k + (−1)mf (m)(c)

(c− x)m

m!

+(−1)m
∫ x

c

f (m+1)(t)

m!
(t− x)mdt,

so (2) holds for m + 1. By induction, (2) holds for 1 ≤ m ≤ n.
Note that (1) follows from (2) with m = n and the fact that

(−1)n−1
∫ x

c

f (n)(t)

(n− 1)!
(t−x)n−1dt− f (n)(c)

n!
(x−c)n =

f (n+1)(zn)

(n + 1)!
(x−c)n+1 (3)

for some zn between x and c. Now we are ready to prove (3). Let J be the
closed interval with endpoints c and x. Define

g(t) =
f (n)(t)− f (n)(c)

t− c
for t 6= c

and g(c) = f (n+1)(c), then g is continuous on J . Let Mg and mg be the
maximum and minimum of g on J respectively. Let

I = (−1)n−1
∫ x

c

f (n)(t)

(n− 1)!
(t− x)n−1dt− f (n)(c)

n!
(x− c)n

= (−1)n−1
∫ x

c

(
f (n)(t)− f (n)(c)

) (t− x)n−1

(n− 1)!
dt

=

∫ x

c

(
f (n)(t)− f (n)(c)

) (x− t)n−1

(n− 1)!
dt,
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then

I

(x− c)n+1
=

∫ x

c

f (n)(t)− f (n)(c)

t− c

(t− c)(x− t)n−1

(n− 1)!(x− c)n+1
dt

=

∫ 1

0

g(c + u(x− c))
u(1− u)n−1

(n− 1)!
du

Since c + u(x− c) ∈ J for u ∈ [0, 1], we have mg ≤ g(c + u(x− c)) ≤Mg and∫ 1

0

mg
u(1− u)n−1

(n− 1)!
du ≤ I

(x− c)n+1
≤
∫ 1

0

Mg
u(1− u)n−1

(n− 1)!
du,

so

mg ≤
I

(x− c)n+1/(n + 1)!
≤Mg.

By the intermediate value theorem, there exists c1 in J such that

g(c1) =
I

(x− c)n+1/(n + 1)!
.

From the definition of g, there exists zn between c and c1 such that g(c1) =
f (n+1)(zn), so

f (n+1)(zn) =
I

(x− c)n+1/(n + 1)!
,

and (3) holds. The proof of (1) is complete.
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