
Series convergence tests

• Suppose that ak ≥ 0 for k ≥ m. Then the series
∑∞

k=m ak converges if
the partial sum sequence {

∑n
k=m ak} is bounded above. If {

∑n
k=m ak}

is not bounded above, then
∑∞

k=m ak =∞ diverges.

• Integral test. Suppose that f ≥ 0 is decreasing and continuous on
[m,∞), where m is a nonnegative integer. Then

∑n
k=m f(k) and∫∞

m f(x)dx(= limn→∞
∫ n
m f(x)dx) both converge or both diverge. This

result can be expressed as the statements in (i) and (ii):

(i) If limn→∞
∫ n
m f(x)dx exists, then

∑∞
k=m f(k) converges.

(ii) If limn→∞
∫ n
m f(x)dx =∞, then

∑∞
k=m f(k) =∞.

We can prove (i) and (ii) using the following result:

f(k + 1) ≤
∫ k+1

k
f(x)dx ≤ f(k) for k ≥ m.

Example 1. Show that
∑∞

k=1 k
−p is convergent if p > 1 and is

divergent if 0 < p ≤ 1.

Sol. Apply the integral test with f(x) = x−p.

•
∑∞

k=1 k
−p is called a p-series.

• Ratio test and root test. Suppose that ak ≥ 0 for all k ≥ m.

– Ratio test. Suppose that limk→∞ ak+1/ak = L. If L < 1, then∑∞
k=m ak converges. If L > 1, then

∑∞
k=m ak diverges.

– Root test. Suppose that limk→∞(ak)
1/k = L. If L < 1, then∑∞

k=m ak converges. If L > 1, then
∑∞

k=m ak diverges.

– The proofs for ratio test and root test are based on direct com-
parison test (to be introduced later).

Example 2. Show that
∑∞

k=1(k!)
−1 converges.

Sol. Use ratio test.

Example 3. Show that
∑∞

k=1(k)
−k converges.

Sol. Use root test.
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• Direct comparison test.

(i) Suppose that 0 ≤ ak ≤ ck for k ≥ m and
∑∞

k=m ck converges.
Then

∑∞
k=m ak converges.

(ii) Suppose that 0 ≤ ck ≤ ak for k ≥ m and
∑∞

k=m ck = ∞. Then∑∞
k=m ak diverges (=∞).

Example 4. Show that
∑∞

k=1 k
−12−k converges.

Sol. Compare k−12−k with 2−k.

• Limit comparison test. Suppose that ak ≥ 0 and bk > 0 for k ≥ m
and limk→∞ ak/bk = L.

(i) If 0 < L <∞, then
∑∞

k=m bk and
∑∞

k=m ak both converge or both
diverge.

(ii) If L =∞ and
∑∞

k=m bk diverges, then
∑∞

k=m ak diverges.

(iii) If L = 0 and
∑∞

k=m bk converges, then
∑∞

k=m ak converges.

Example 5. Show that
∑∞

k=1 k
−q ln(k) converges if q > 1 and diverges

if q ≤ 1.

Sol. Compare k−q ln(k) with k−p for some p ∈ (1, q) if q > 1 (limit
comparison). Compare k−q ln(k) with k−q for q ≤ 1 (limit compari-
son).

• Absolute convergence test. If
∑∞

k=m |ak| converges,
∑∞

k=m ak con-
verges. In such case, we say that

∑∞
k=m ak converges absolutely.

– Proof of the absolute convergence test is based on the fact that
0 ≤ |ak|+ ak ≤ 2|ak|.

– If
∑∞

k=m ak converges and
∑∞

k=m |ak| diverges, then we say that∑∞
k=m ak converges conditionally.

Example 6. Show that
∑∞

k=1 2
−k sin(k) converges.

Sol. Compare |2−k sin(k)| with 2−k (direct comparison) and we have∑∞
k=1 |2−k sin(k)| converges. By the absolute convergence test,

∑∞
k=1 2

−k sin(k)
converges.
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• Generalized ratio test. Suppose that limk→∞ |ak+1/ak| = L. Then

(i)
∑∞

k=m ak converges absolutely if L < 1, and

(ii)
∑∞

k=m ak diverges if L > 1.

• Alternating series. Suppose that ak > 0 for k ≥ m and {bk} = {(−1)k}
or {(−1)k+1}. Then

∑∞
k=m bkak is called an alternating series and the

following results holds.

– Alternating series test. If the sequence {ak} is decreasing and
limk→∞ ak = 0, then the alternating series

∑∞
k=m bkak is conver-

gent.

– Let Sn =
∑n

k=m bkak. Then |Sn+N − Sn| ≤ an+1 for n ≥ m and
N ≥ 0.

Example 7. Show that
∑∞

k=1(−1)k+1k−1 converges conditionally.

Sol. Since limk→∞ k−1 = 0 and k−1 > 0,
∑∞

k=1(−1)k+1k−1 converges
by the alternating series test. Also,

∑∞
k=1(−1)k+1k−1 does not con-

verge absolutely since the p-series with p = 1 is divergent. Therefore,∑∞
k=1(−1)k+1k−1 converges conditionally.
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