Series convergence tests

- Suppose that $a_k \ge 0$ for $k \ge m$. Then the series $\sum_{k=m}^{\infty} a_k$ converges if the partial sum sequence $\{\sum_{k=m}^n a_k\}$ is bounded above. If $\{\sum_{k=m}^n a_k\}$ is not bounded above, then $\sum_{k=m}^{\infty} a_k = \infty$ diverges.
- Integral test. Suppose that $f \ge 0$ is decreasing and continuous on $[m, \infty)$, where m is a nonnegative integer. Then $\sum_{k=m}^{n} f(k)$ and $\int_{m}^{\infty} f(x)dx (= \lim_{n\to\infty} \int_{m}^{n} f(x)dx)$ both converge or both diverge. This result can be expressed as the statements in (i) and (ii):
 - (i) If $\lim_{n\to\infty} \int_m^n f(x) dx$ exists, then $\sum_{k=m}^{\infty} f(k)$ converges.
 - (ii) If $\lim_{n\to\infty} \int_m^n f(x) dx = \infty$, then $\sum_{k=m}^\infty f(k) = \infty$.

We can prove (i) and (ii) using the following result:

$$f(k+1) \le \int_{k}^{k+1} f(x)dx \le f(k) \text{ for } k \ge m.$$

Example 1. Show that $\sum_{k=1}^{\infty} k^{-p}$ is convergent if p > 1 and is divergent if 0 .

Sol. Apply the integral test with $f(x) = x^{-p}$.

- $\sum_{k=1}^{\infty} k^{-p}$ is called a *p*-series.
- Ratio test and root test. Suppose that $a_k \ge 0$ for all $k \ge m$.
 - Ratio test. Suppose that $\lim_{k\to\infty} a_{k+1}/a_k = L$. If L < 1, then $\sum_{k=m}^{\infty} a_k$ converges. If L > 1, then $\sum_{k=m}^{\infty} a_k$ diverges.
 - Root test. Suppose that $\lim_{k\to\infty} (a_k)^{1/k} = L$. If L < 1, then $\sum_{k=m}^{\infty} a_k$ converges. If L > 1, then $\sum_{k=m}^{\infty} a_k$ diverges.
 - The proofs for ratio test and root test are based on direct comparison test (to be introduced later).

Example 2. Show that $\sum_{k=1}^{\infty} (k!)^{-1}$ converges.

Sol. Use ratio test.

Example 3. Show that $\sum_{k=1}^{\infty} (k)^{-k}$ converges.

Sol. Use root test.

- Direct comparison test.
 - (i) Suppose that $0 \le a_k \le c_k$ for $k \ge m$ and $\sum_{k=m}^{\infty} c_k$ converges. Then $\sum_{k=m}^{\infty} a_k$ converges.
 - (ii) Suppose that $0 \le c_k \le a_k$ for $k \ge m$ and $\sum_{k=m}^{\infty} c_k = \infty$. Then $\sum_{k=m}^{\infty} a_k$ diverges $(=\infty)$.

Example 4. Show that $\sum_{k=1}^{\infty} k^{-1} 2^{-k}$ converges.

Sol. Compare $k^{-1}2^{-k}$ with 2^{-k} .

- Limit comparison test. Suppose that $a_k \ge 0$ and $b_k > 0$ for $k \ge m$ and $\lim_{k\to\infty} a_k/b_k = L$.
 - (i) If $0 < L < \infty$, then $\sum_{k=m}^{\infty} b_k$ and $\sum_{k=m}^{\infty} a_k$ both converge or both diverge.
 - (ii) If $L = \infty$ and $\sum_{k=m}^{\infty} b_k$ diverges, then $\sum_{k=m}^{\infty} a_k$ diverges.
 - (iii) If L = 0 and $\sum_{k=m}^{\infty} b_k$ converges, then $\sum_{k=m}^{\infty} a_k$ converges.

Example 5. Show that $\sum_{k=1}^{\infty} k^{-q} \ln(k)$ converges if q > 1 and diverges if $q \le 1$.

Sol. Compare $k^{-q} \ln(k)$ with k^{-p} for some $p \in (1,q)$ if q > 1 (limit comparison). Compare $k^{-q} \ln(k)$ with k^{-q} for $q \leq 1$ (limit comparison).

- Absolute convergence test. If $\sum_{k=m}^{\infty} |a_k|$ converges, $\sum_{k=m}^{\infty} a_k$ converges. In such case, we say that $\sum_{k=m}^{\infty} a_k$ converges absolutely.
 - Proof of the absolute convergence test is based on the fact that $0 \le |a_k| + a_k \le 2|a_k|.$
 - If $\sum_{k=m}^{\infty} a_k$ converges and $\sum_{k=m}^{\infty} |a_k|$ diverges, then we say that $\sum_{k=m}^{\infty} a_k$ converges conditionally.

Example 6. Show that $\sum_{k=1}^{\infty} 2^{-k} \sin(k)$ converges.

Sol. Compare $|2^{-k}\sin(k)|$ with 2^{-k} (direct comparison) and we have $\sum_{k=1}^{\infty} |2^{-k}\sin(k)|$ converges. By the absolute convergence test, $\sum_{k=1}^{\infty} 2^{-k}\sin(k)$ converges.

- Generalized ratio test. Suppose that $\lim_{k\to\infty} |a_{k+1}/a_k| = L$. Then
 - (i) $\sum_{k=m}^{\infty} a_k$ converges absolutely if L < 1, and
 - (ii) $\sum_{k=m}^{\infty} a_k$ diverges if L > 1.
- Alternating series. Suppose that $a_k > 0$ for $k \ge m$ and $\{b_k\} = \{(-1)^k\}$ or $\{(-1)^{k+1}\}$. Then $\sum_{k=m}^{\infty} b_k a_k$ is called an alternating series and the following results holds.
 - Alternating series test. If the sequence $\{a_k\}$ is decreasing and $\lim_{k\to\infty} a_k = 0$, then the alternating series $\sum_{k=m}^{\infty} b_k a_k$ is convergent.
 - Let $S_n = \sum_{k=m}^n b_k a_k$. Then $|S_{n+N} S_n| \le a_{n+1}$ for $n \ge m$ and $N \ge 0$.

Example 7. Show that $\sum_{k=1}^{\infty} (-1)^{k+1} k^{-1}$ converges conditionally.

Sol. Since $\lim_{k\to\infty} k^{-1} = 0$ and $k^{-1} > 0$, $\sum_{k=1}^{\infty} (-1)^{k+1} k^{-1}$ converges by the alternating series test. Also, $\sum_{k=1}^{\infty} (-1)^{k+1} k^{-1}$ does not converge absolutely since the *p*-series with p = 1 is divergent. Therefore, $\sum_{k=1}^{\infty} (-1)^{k+1} k^{-1}$ converges conditionally.