Series convergence tests

e Suppose that a; > 0 for £ > m. Then the series > 72, ar converges if
the partial sum sequence {>_;_,, ar} is bounded above. If {} 7, ax}
is not bounded above, then > 72 aj; = oo diverges.

e Integral test. Suppose that f > 0 is decreasing and continuous on
[m,00), where m is a nonnegative integer. Then Y ;_  f(k) and
Jo2 f(z)da(= limy oo [ f(z)dz) both converge or both diverge. This
result can be expressed as the statements in (i) and (ii):

(i) If limp oo [ f(x)dx exists, then Y72, f(k) converges.
(i) If lim, o0 [, f(z)dz = oo, then Y22, f(k) = oo.
We can prove (i) and (ii) using the following result:

k+1
Flh+1) < /k F(x)de < f(k) for k > m.

Example 1. Show that Y 72, k™P is convergent if p > 1 and is
divergent if 0 < p < 1.

Sol. Apply the integral test with f(z) = x7P.
o > 72, k7P is called a p-series.
e Ratio test and root test. Suppose that a; > 0 for all & > m.

— Ratio test. Suppose that limy oo agy1/ax = L. If L < 1, then
> i ai converges. If L > 1, then Y72, a; diverges.

— Root test. Suppose that limy_,o(ax)'/* = L. If L < 1, then
Y pem ak converges. If L > 1, then > 72 aj diverges.

— The proofs for ratio test and root test are based on direct com-
parison test (to be introduced later).
Example 2. Show that Y22, (k!)~! converges.
Sol. Use ratio test.

Example 3. Show that >.2° (k)" converges.

Sol. Use root test.



Direct comparison test.
i) Suppose that 0 < a; < ¢, for £k > m and > 72 ¢, converges.
k=m g
Then > 72, ai converges.

(ii) Suppose that 0 < ¢, < ay for &k > m and > 72, cx = co. Then
Y ore,, ak diverges (= c0).

Example 4. Show that >3, k~'27% converges.

Sol. Compare k~127% with 27%.

Limit comparison test. Suppose that ar > 0 and by > 0 for £k > m
and limy_, o0 ag /by, = L.

(i) If 0 < L < oo, then Y72 b and > 72, ax both converge or both
diverge.
(ii)) If L = 0o and > 72, br diverges, then > 72 aj diverges.

(iii) If L =0 and Y72, by converges, then > 2, aj converges.

Example 5. Show that Y 7-; k~%In(k) converges if ¢ > 1 and diverges
if ¢ <1.

Sol. Compare k~91In(k) with k7P for some p € (1,q) if ¢ > 1 (limit
comparison). Compare k~9In(k) with k79 for ¢ < 1 (limit compari-
son).

Absolute convergence test. If Y72 |ag| converges, > 7o, ai con-
verges. In such case, we say that > 2, ax converges absolutely.

— Proof of the absolute convergence test is based on the fact that
0 < |ak| + ar < 2|ag].

— If >°p2,, ar converges and Y po,. |ag| diverges, then we say that
> ore,, ax converges conditionally.

Example 6. Show that Y32, 27 ¥ sin(k) converges.

Sol. Compare |27 % sin(k)| with 2% (direct comparison) and we have
S92, |27 sin(k)| converges. By the absolute convergence test, >.52; 2% sin(k)
converges.



e Generalized ratio test. Suppose that limg_,o |ax+1/ar| = L. Then

(1) >, ar converges absolutely if L < 1, and
(i) >-p2,, ax diverges if L > 1.

e Alternating series. Suppose that az, > 0 for k > m and {b;} = {(—1)*}
or {(—1)¥*1}. Then 3332 bray is called an alternating series and the
following results holds.

— Alternating series test. If the sequence {a} is decreasing and
limy_,o0 ar, = 0, then the alternating series Y 7o, bray is conver-
gent.

— Let S, = >}, brag. Then [Sp+n — Sn| < ant1 for n > m and
N > 0.

Example 7. Show that 322 (—1)**1k~! converges conditionally.

Sol. Since limy 00 k™! =0 and k=1 > 0, 322, (—1)*"1k~! converges
by the alternating series test. Also, S°7°;(—1)**1£~1 does not con-
verge absolutely since the p-series with p = 1 is divergent. Therefore,

> (=1)F*F1E=1 converges conditionally.



