
Limit of a sequence, BMCT and Series

• limn→∞ an can be viewed as limx→∞ f(x), where the domain of f
is D = {n : n is an integer and an is defined }, and f(x) = ax for
x ∈ D. We say a sequence {an} is convergent if limn→∞ an exists.

• Fact 1 If limx→∞ f(x) = L, then limn→∞ f(n) = L.

Example 1. Find lim
n→∞

ln(n)

n
.

Sol. Apply L’Hôpital’s rule, lim
x→∞

ln(x)

x
= lim

x→∞
1

x
= 0, so lim

n→∞
ln(n)

n
=

0.

• BMCT (bounded, monotonic, convergence theorem): a monotone (單
調) sequence is convergent if and only if it is bounded (有界).

• Bounded sequences.

– A sequence {bn} is bounded above (有上界) if there exists a real
number M such that bn ≤ M for every n. In such case, M is
called an upper bound of {bn}.

– A sequence {bn} is bounded below (有下界) if there exists a real
number m such that bn ≥ m for every n. In such case, m is called
a lower bound of {bn}.

– A sequence {bn} is bounded if it is bounded both above and below
(有界=有上界與下界).

• Monotone (monotonic) sequences (單調數列). A monotone sequence
is either an increasing sequence (遞增數列) or a decreasing sequence
(遞減數列).

– A sequence {bn} is increasing (遞增) if bn ≤ bn+1 for every n. If
bn < bn+1 for every n, then {bn} is strictly increasing (嚴格遞增).

– A sequence {bn} is decreasing (遞減) if bn ≥ bn+1 for every n. If
bn > bn+1 for every n, then {bn} is strictly decreasing (嚴格遞
減).

• The following fact is a modified version of BMCT, and BMCT follows
from this fact.
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Fact 2 (Modified BMCT) Suppose that a sequence {bn} is increasing.
Then

(i) {bn} is convergent and converges to its least upper bound (最小
上界) if it is bounded above, and

(ii) {bn} diverges to ∞ if it is not bounded above.

• Example 2. Show that the sequence {(1 + n−1)n}∞n=1 is convergent.

Sol. Note that

(1 + (n + 1)−1)n+1

(1 + n−1)n
=

(
1− 1

(n + 1)2

)n (
1 +

1

n + 1

)
≥

(
1− n

(n + 1)2

)(
1 +

1

n + 1

)
=

n3 + 3n2 + 3n + 2

(n + 1)3
≥ 1

and

(1 + n−1)n ≤
n∑

k=0

1

k!
≤

n∑
k=0

2

2k
< 4.

Thus {(1 + n−1)n}∞n=1 is increasing, bounded above by 4. By the
modified BMCT (Fact 2), {(1 + n−1)n} is convergent.

• Remark. In Example 2, we can also apply the BMCT to show that
{(1 + n−1)n}∞n=1 is convergent since {(1 + n−1)n}∞n=1 is increasing,
bounded above by 4 and bounded below by 2 (the first number in
sequence).

• Example 3. Suppose that a1 =
√

2 and an+1 =
√

2 + an for n ≥ 1.
Show that the sequence {an}∞n=1 is convergent.

• Suppose that {ak}∞k=m is a sequence of real numbers, where m is fixed.
Then ∞∑

k=m

ak
def
= lim

n→∞

n∑
k=m

ak.

– If limn→∞
∑n

k=m ak = L exists, then we say the series
∑∞

k=m ak
converges with sum L.

– If the limit of
∑n

k=m ak does not exist, then we say the series∑∞
k=m ak diverges.
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–
∑n

k=m ak is called a partial sum ( (部分和) of the series
∑∞

k=m ak.

• Examlpes of finding the sum of a series through direct caculation.

Example 4. Find
∑∞

k=1 2−k.

Sol. Recall that
∑n

k=1 ar
k = ar(1− rn)/(1− r) if r 6= 1. Therefore,

∞∑
k=1

2−k = lim
n→∞

n∑
k=1

2−k = lim
n→∞

0.5(1− (0.5)n)

1− 0.5
= 1.

– The geometric series
∑∞

k=m ark = arm/(1− r) if |r| < 1.

Example 5. Find
∑∞

k=3(2k + 1)/(k2(k + 1)2).

• Suppose that ak ≥ 0 for k ≥ m. From the modified BMCT (Fact 2),
we have the following two results.

– If the partial sum sequence {
∑n

k=m ak} is bounded above, then
the series

∑∞
k=m ak converges.

– If the partial sum sequence {
∑n

k=m ak} is not bounded above,
then the series

∑∞
k=m ak =∞ diverges.

• Example 6. Show that the series
∑∞

k=0 1/k! is convergent.

• Divergence test (Theorem 8.9). If limk→∞ ak 6= 0, then
∑∞

k=m ak di-
verges.

Example 7. Suppose that a 6= 0. Then the geometric series
∑∞

k=m ark

diverges if |r| ≥ 1.
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