Improper integrals (瑕積分)

- Two basic types of improper integrals:
 - (i) integrals with unbounded integration ranges and
 - (ii) integrals with discontinuous unbounded integrands.
- Integrals with unbounded integration ranges.
 - Suppose that f is continuous on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx. \tag{1}$$

- Suppose that f is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx. \tag{2}$$

• Example 1. Find $\int_1^\infty \frac{1}{x^2} dx$.

Sol.

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \left(\int_{1}^{b} x^{-2} dx \right)$$
$$= \lim_{b \to \infty} \left(\left(-x^{-1} \Big|_{1}^{b} \right) \right) = \lim_{b \to \infty} \left(-\frac{1}{b} - (-1) \right) = 1.$$

- Integrals with unbounded integrands.
 - Suppose that f is continuous on (a, b] and f is unbounded on [a, b]. Then

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx. \tag{3}$$

– Suppose that f is continuous on [a,b) and f is unbounded on [a,b]. Then

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx. \tag{4}$$

Example 2. Find $\int_0^{\pi/2} \tan(x) dx$ and $\int_{-\pi/2}^0 \tan(x) dx$.

Sol.

$$\int_{0}^{\pi/2} \tan(x) dx = \lim_{b \to (\pi/2)^{-}} \int_{0}^{b} \tan(x) dx$$

$$= \lim_{b \to (\pi/2)^{-}} -\ln(\cos(x))|_{0}^{b}$$

$$= \lim_{b \to (\pi/2)^{-}} -\ln(\cos(b))$$

$$= \lim_{y \to 0^{+}} -\ln(y) = \infty.$$

$$\int_{-\pi/2}^{0} \tan(x) dx = \lim_{b \to (-\pi/2)^{+}} -\ln(\cos(x))|_{b}^{0}$$

$$= \lim_{b \to (-\pi/2)^{+}} \ln(\cos(b))$$

$$= \lim_{y \to 0^{+}} \ln(y) = -\infty.$$

Example 3. Find $\int_0^1 x^{-1/2} dx$.

Sol.

$$\int_0^1 x^{-1/2} dx = \lim_{b \to 0^+} \int_b^1 x^{-1/2} dx$$
$$= \lim_{b \to 0^+} 2x^{1/2} \Big|_b^1 = \lim_{b \to 0^+} (2 - 2b^{1/2}) = 2.$$

- Notation. Suppose that a < b and I is an interval with endpoints a and b. Then $\int_I f(x) dx$ means $\int_a^b f(x) dx$.
- Suppose that an interval I can be divided into sub-intervals I_1, \ldots, I_n such that for $k = 1, \ldots, n, \int_{I_k} f(x) dx$ can be evaluated as a limit using (1) (4). Then

$$\int_{I} f(x)dx = \sum_{k=1}^{n} \int_{I_{k}} f(x)dx$$

if $\int_{I_1} f(x)dx$, ..., $\int_{I_n} f(x)dx$ can be defined and the sum $\sum_{k=1}^n \int_{I_k} f(x)dx$ does not involving $\infty - \infty$.

– If $\int_{I_k} f(x)dx$ cannot be defined for some k, then $\int_I f(x)dx$ cannot be defined.

- Limits involving $\pm \infty$ are allowed, but $\infty \infty$ cannot be defined.
- If $\int_{I_1} f(x)dx$, ..., $\int_{I_n} f(x)dx$ are finite, then the improper integral is called convergent.
- Basic properties of Riemann integrals still hold for improper integrals.
 - Linearity. $\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$ and for a constant k, $\int_a^b kf(x)dx = k \int_a^b f(x)dx$.
 - Dominance rule. Suppose that $f \geq g$ on (a, b), then $\int_a^b f(x)dx \geq \int_a^b g(x)dx$.
 - Subdivision rule. $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$
- Example 4. Find

(a)
$$\int_{-\pi/2}^{\pi/2} \tan(x) dx$$
 and

(b)
$$\int_{-\pi/2}^{\pi/2} |\tan(x)| dx$$
.

Sol.

(a) From Example 2, we have

$$\int_0^{\pi/2} \tan(x) dx = \infty \text{ and } \int_{-\pi/2}^0 \tan(x) dx = -\infty,$$

SO

$$\int_{-\pi/2}^{\pi/2} \tan(x) dx = \int_{-\pi/2}^{0} \tan(x) dx + \int_{0}^{\pi/2} \tan(x) dx = -\infty + \infty$$

cannot be defined.

(b)

$$\int_{-\pi/2}^{\pi/2} |\tan(x)| dx = \int_{-\pi/2}^{0} (-\tan(x)) dx + \int_{0}^{\pi/2} \tan(x) dx$$
$$= -\int_{-\pi/2}^{0} \tan(x) dx + \infty$$
$$= -(-\infty) + \infty = \infty.$$

• Example 5. Let

$$f(x) = \begin{cases} 2 & \text{if } |x| \le 1; \\ |x|^{-2} & \text{if } |x| > 1. \end{cases}$$

Find
$$\int_0^\infty f(x)dx$$
.

Sol. From Example 1, $\int_1^\infty (1/x^2) dx = 1$, so

$$\int_0^\infty f(x)dx = \int_0^1 2dx + \int_1^\infty \frac{1}{x^2}dx = 2x|_0^1 + 1 = 2 + 1 = 3.$$

• Example 6. Find $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ using the following results:

(i)
$$\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + C$$
, and

(ii)
$$\lim_{x \to \infty} \tan^{-1}(x) = \pi/2$$
.

Answer: π .

• Verification of $\lim_{x\to\infty} \tan^{-1}(x) = \pi/2$. For $\varepsilon \in (0,\pi/2)$, take $M = \tan(\pi/2 - \varepsilon)$, then

$$x > M \Rightarrow \tan^{-1}(x) > \pi/2 - \varepsilon \Rightarrow |\tan^{-1}(x) - \pi/2| < \varepsilon.$$

Thus $\lim_{x\to\infty} \tan^{-1}(x) = \pi/2$. Here we have used the fact that $\tan^{-1}(x)$ is a strictly increasing function of x on $(-\infty, \infty)$ since $\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2} > 0$ for $x \in (-\infty, \infty)$.

• Example 7. Find $\int_{-\infty}^{-1} x^{-1} dx$. Answer: $-\infty$.

Example 8. Find $\int_1^\infty x^{-1} dx$. Answer: ∞ .

Example 9. Let

$$f(x) = \begin{cases} 2 & \text{if } |x| \le 1; \\ 1/x & \text{if } |x| > 1. \end{cases}$$

Find $\int_{-\infty}^{\infty} f(x)dx$.

Answer: $\int_{-\infty}^{\infty} f(x)dx$ cannot be defined.